Kinematically complete measurements for Coulomb dissociation of n Li into 9 Li + 2« were made at 28 MeV/nucleon. The n-n correlation function suggests a large source size for the two-neutron emission. The electromagnetic excitation spectrum of n Li has a peak, as anticipated in low-energy dipole resonance models, but a large post-breakup Coulomb acceleration of the 9 Li fragment is observed, indicating a very short lifetime of the excited state and favoring direct breakup as the dissociation mechanism.
The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0:3 < p T < 9 GeV=c at midrapidity (jyj < 0:35) from heavy-flavor (charm and bottom) decays in Au Au collisions at s NN p 200 GeV. The nuclear modification factor R AA relative to p p collisions shows a strong suppression in central Au Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy v 2 with respect to the reaction plane is observed for 0:5 < p T < 5 GeV=c indicating substantial heavy-flavor elliptic flow. Both R AA and v 2 show a p T dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R AA p T and v 2 p T suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.