The occurrence of Ebola virus (EBOV) in West Africa during 2013-2015 is unprecedented. Early reports suggested that in this outbreak EBOV is mutating twice as fast as previously observed, which indicates the potential for changes in transmissibility and virulence and could render current molecular diagnostics and countermeasures ineffective. We have determined additional full-length sequences from two clusters of imported EBOV infections into Mali, and we show that the nucleotide substitution rate (9.6 × 10(-4) substitutions per site per year) is consistent with rates observed in Central African outbreaks. In addition, overall variation among all genotypes observed remains low. Thus, our data indicate that EBOV is not undergoing rapid evolution in humans during the current outbreak. This finding has important implications for outbreak response and public health decisions and should alleviate several previously raised concerns.
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Background
MDR-TB is a major threat to global TB control. In 2015, 580,000 were treated for MDR-TB worldwide. The worldwide roll-out of GeneXpert MTB/RIF
®
has improved diagnosis of MDR-TB; however, in many countries laboratories are unable to assess drug resistance and clinical predictors of MDR-TB could help target suspected patients. In this study, we aimed to determine the clinical factors associated with MDR-TB in Bamako, Mali.
Methods
We performed a cross-sectional study of 214 patients with presumed MDR-TB admitted to University of Bamako Teaching Hospital, Point-G between 2007 and 2016. We calculated crude and adjusted odds ratios for MDR-TB disease diagnosis using SPSS.
Results
We found that age ≤40years (OR = 2.56. 95% CI: 1.44–4.55), two courses of prior TB treatment (OR = 3.25,95% CI: 1.44–7.30), TB treatment failure (OR = 3.82,95% CI 1.82–7.79), sputum microscopy with 3+ bacilli load (OR = 1.98, 95% CI: 1.13–3.48) and a history of contact with a TB patient (OR = 2.48, 95% CI: 1.11–5.50) were significantly associated with confirmation of MDR-TB disease. HIV was not a risk factor for MDR-TB (aOR = 0.88, 95% CI: 0.34–1.94).
Conclusion
We identified several risk factors that could be used to identify MDR-TB suspects and prioritize them for laboratory confirmation. Prospective studies are needed to understand factors associated with TB incidence and clinical outcomes of TB treatment and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.