The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns. K: Beam-line instrumentation (beam position and profile monitors, beam-intensity monitors, bunch length monitors); Spectrometers; Gas systems and purification; Neutrino detectors A X P : 2103.04755Neutrino-mass mode. This is the standard mode of operation to continually adjust the retarding voltage of the MS in the range of [ 0 − 40 eV; 0 + 50 eV] while tritium is in the system. This scanning range can be adjusted if required. The voltage and the time spent at each setting are defined by the Measurement Time Distribution (MTD) (figure 3). A typical run at a given voltage lasts between 20 s and 600 s; a full scan of the energy range given above takes about 2 h. Of these standard neutrino-mass runs, a small portion will be dedicated to sterile neutrino searches. These searches involve scanning much farther (order of keV) below the endpoint 0 .Calibration mode. To check the long-term system stability, calibration measurements are done regularly. The neutrino-mass mode is suspended for the duration of these measurement:• An energy calibration of the FPD (section 6) is performed weekly, which requires closing off the detector system from the main beamline for about 4 h.• The offset and the gain correction factor of the low-voltage readout in the high-voltage measurement chain needs to be calibrated based on standard reference sources (section 5.3.4). This requires stopping the precision monitoring of the MS retarding potential twice per week for about 0.5 h each.
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer ("Main Spectrometer"), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3 , and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 • C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 −11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.
The gas-flow reduction factor of the second forward Differential Pumping Section (DPS2-F) for the KATRIN experiment was determined using a dedicated vacuum-measurement setup and by detailed molecular-flow simulation of the DPS2-F beam tube and of the measurement apparatus. In the measurement, non-radioactive test gases deuterium, helium, neon, argon and krypton were used, the input gas flow was provided by a commercial mass-flow controller, and the output flow was measured using a residual gas analyzer, in order to distinguish it from the outgassing background. The measured reduction factor with the empty beam tube at room temperature for gases with mass 4 is 1.8(4) × 10 4 , which is in excellent agreement with the simulated value of 1.6 × 10 4 . The simulated reduction factor for tritium, based on the interpolated value for the capture factor at the turbo-molecular pump inlet flange is 2.5 × 10 4 . The difference with respect to the design value of 1 × 10 5 is due to the modifications in the beam tube geometry since the initial design, and can be partly recovered by reduction of the effective beam tube diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.