A wide variety of fast ion driven instabilities are excited during neutral beam injection ͑NBI͒ in the National Spherical Torus Experiment ͑NSTX͒ ͓Nucl. Fusion 40, 557 ͑2000͔͒ due to the large ratio of fast ion velocity to Alfvén velocity, V fast / V Alfvén , and high fast ion beta. The ratio V fast / V Alfvén in ITER ͓Nucl. Fusion 39, 2137 ͑1999͔͒ and NSTX is comparable. The modes can be divided into three categories: chirping energetic particle modes ͑EPM͒ in the frequency range 0 to 120 kHz, the toroidal Alfvén eigenmodes ͑TAE͒ with a frequency range of 50 kHz to 200 kHz, and the compressional and global Alfvén eigenmodes ͑CAE and GAE, respectively͒ between 300 kHz and the ion cyclotron frequency. Fast ion driven modes are of particular interest because of their potential to cause substantial fast ion losses. In all regimes of NBI heated operation we see transient neutron rate drops, correlated with bursts of TAE or fishbone-like EPMs. The fast ion loss events are predominantly correlated with the EPMs, although losses are also seen with bursts of multiple, large amplitude TAE. The latter is of particular significance for ITER; the transport of fast ions from the expected resonance overlap in phase space of a "sea" of large amplitude TAE is the kind of physics expected in ITER. The internal structure and amplitude of the TAE and EPMs has been measured with quadrature reflectometry and soft x-ray cameras. The TAE bursts have internal amplitudes of ñ / n = 1% and toroidal mode numbers 2 Ͻ n Ͻ 7. The EPMs are core localized, kink-like modes similar to the fishbones in conventional aspect ratio tokamaks. Unlike the fishbones, the EPMs can be present with q͑0͒ Ͼ 1 and can have a toroidal mode number n Ͼ 1. The range of the frequency chirp can be quite large and the resonance can be through a fishbone-like precessional drift resonance, or through a bounce resonance.
This paper describes the first observations in the National Spherical Torus Experiment (NSTX) [S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)] of “quiet periods” in the edge turbulence preceding the low-to-high (L-H) mode transition, as diagnosed by the gas puff imaging (GPI) diagnostic near the outer midplane separatrix. During these quiet periods the GPI Dα light emission pattern was transiently similar to that seen during H-mode, i.e., with a relatively small fraction of the GPI light emission located outside the separatrix. These quiet periods had a frequency of ∼3 kHz for at least 30 ms before the L-H transition, and were correlated with changes in the direction of the local poloidal velocity. The GPI turbulence images were also analyzed to obtain an estimate for the dimensionless poloidal shearing S=(dVp/dr)(Lr/Lp)τ. The values of S were strongly modulated by the quiet periods but did not significantly vary during the ∼30 ms preceding the L-H transition. Since neither the quiet periods nor the shear flow increased immediately preceding the L-H transition, neither of these appears to be the trigger for this transition, at least for these cases in NSTX.
National Spherical Torus Experiment [which M. Ono et al., Nucl. Fusion 40, 557 (2000)] high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.
Fast-ion transport induced by Alfvén eigenmodes ͑AEs͒ is studied in beam-heated plasmas on the National Spherical Torus Experiment ͓Ono et al., Nucl. Fusion 40, 557 ͑2000͔͒ through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs ͑TAEs͒, which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range Ͼ20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
Lithium wall coatings have been shown to reduce recycling, suppress edge-localized modes (ELMs), and improve energy confinement in the National Spherical Torus Experiment (NSTX). Here we document the effect of gradually increasing lithium wall coatings on the discharge characteristics, with the reference ELMy discharges obtained in boronized, i.e. non-lithiated conditions. We observed a continuous but not quite monotonic reduction in recycling and improvement in energy confinement, a gradual alteration of edge plasma profiles, and slowly increasing periods of ELM quiescence. The measured edge plasma profiles during the lithium-coating scan were simulated with the SOLPS code, which quantified the reduction in divertor recycling coefficient from ∼98% to ∼90%. The reduction in recycling and fuelling, coupled with a drop in the edge particle transport rate, reduced the average edge density profile gradient, and shifted it radially inwards from the separatrix location. In contrast, the edge electron temperature (T e) profile was unaffected in the H-mode pedestal steep gradient region within the last 5% of normalized poloidal flux, ψ N ; however, the T e gradient became steeper at the top of the H-mode pedestal for 0.8 < ψ N < 0.94 with lithium coatings. The peak pressure gradients were comparable during ELMy and ELM-free phases, but were shifted away from the separatrix in the ELM-free discharges, which is stabilizing to the current-driven instabilities thought to be responsible for ELMs in NSTX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.