Emerging technologies are considering the possible use of Terahertz radiation in different fields ranging from telecommunications to biology and biomedicine. The study of the potential effects of Terahertz radiation on biological systems is therefore an important issue in order to safely develop a variety of applications. This paper describes a pilot study devoted to determine if Terahertz radiation could induce genotoxic effects in human peripheral blood leukocytes. For this purpose, human whole blood samples from healthy donors were exposed for 20 min to Terahertz radiation. Since, to our knowledge, this is the first study devoted to the evaluation of possible genotoxic effects of such radiation, different electromagnetic conditions were considered. In particular, the frequencies of 120 and 130 GHz were chosen: the first one was tested at a specific absorption rate (SAR) of 0.4 mW g-1, while the second one was tested at SAR levels of 0.24, 1.4, and 2 mW g-1. Chromosomal damage was evaluated by means of the cytokinesis block micronucleus technique, which also gives information on cell cycle kinetics. Moreover, human whole blood samples exposed to 130 GHz at SAR levels of 1.4 and 2 mW g-1 were also tested for primary DNA damage by applying the alkaline comet assay immediately after exposure. The results obtained indicate that THz exposure, in the explored electromagnetic conditions, is not able to induce either genotoxicity or alteration of cell cycle kinetics in human blood cells from healthy subjects.
The aim of the present study is toinvestigate the genotoxic effect of THzradiation in human peripheral bloodlymphocytes following 20 minutes exposureto 1 mW average power Free Electron Laserradiation in the frequency range 120-140GHz. For this purpose 9 healthy donors wereemployed and cytokinesis block techniquewas applied to study micronucleusfrequency and cell proliferation. Theresults obtained indicate that all theelectromagnetic conditions adopted so far do not alter the investigated parameters,suggesting absence of direct chromosomaldamage and alteration of cell cyclekinetics (two tailed paired Student's test:p> 0.05 in all cases).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.