We performed two-dimensional, fully compressible, time-implicit simulations of convection in a solar-like model with the MUSIC code. Our main motivation is to explore the impact of a common tactic adopted in numerical simulations of convection that use realistic stellar conditions. This tactic is to artificially increase the luminosity and to modify the thermal diffusivity of the reference stellar model. This work focuses on the impact of these modifications on convective penetration (or overshooting) at the base of the convective envelope of a solar-like model. We explore a range of enhancement factors for the energy input (or stellar luminosity) and confirm the increase in the characteristic overshooting depth with the increase in the energy input, as suggested by analytical models and by previous numerical simulations. We performed high-order moments analysis of the temperature fluctuations for moderate enhancement factors and find similar flow structure in the convective envelope and the penetration region, independently of the enhancement factor. As a major finding, our results highlight the importance of the impact of penetrative downflows on the thermal background below the convective boundary. This is a result of compression and shear which induce local heating and thermal mixing. The artificial increase in the energy flux intensifies the heating process by increasing the velocities in the convective zone and at the convective boundary, revealing a subtle connection between the local heating of the thermal background and the plume dynamics. This heating also increases the efficiency of heat transport by radiation which may counterbalance further heating and helps to establish a steady state. We suggest that the modification of the thermal background by penetrative plumes impacts the width of the overshooting layer. Additionally, our results suggest that an artificial modification of the radiative diffusivity in the overshooting layer, rather than only accelerating the thermal relaxation, could also alter the dynamics of the penetrating plumes and thus the width of the overshooting layer. Results from simulations with an artificial modification of the energy flux and of the thermal diffusivity should thus be regarded with caution if used to determine an overshooting distance.
We perform two-dimensional numerical simulations of core convection for zero-age-main-sequence stars covering a mass range from 3 M⊙ to 20 M⊙. The simulations are performed with the fully compressible time-implicit code MUSIC. We study the efficiency of overshooting, which describes the ballistic process of convective flows crossing a convective boundary, as a function of stellar mass and luminosity. We also study the impact of artificially increasing the stellar luminosity for 3 M⊙ models. The simulations cover hundreds to thousands of convective turnover timescales. Applying the framework of extreme plume events previously developed for convective envelopes, we derive overshooting lengths as a function of stellar masses. We find that the overshooting distance (dov) scales with the stellar luminosity (L) and the convective core radius (rconv). We derive a scaling law $d_{\rm ov} \propto L^{1/3} r_{\rm conv}^{1/2}$ which is implemented in a 1D stellar evolution code and the resulting stellar models are compared to observations. The scaling predicts values for the overshooting distance that significantly increase with stellar mass, in qualitative agreement with observations. Quantitatively, however, the predicted values are underestimated for masses ≳ 10M⊙. Our 2D simulations show the formation of a nearly-adiabatic layer just above the Schwarzschild boundary of the convective core, as exhibited in recent 3D simulations of convection. The most luminous models show a growth in size with time of the nearly-adiabatic layer. This growth seems to slow down as the upper edge of the nearly-adiabatic layer gets closer to the maximum overshooting length and as the simulation time exceeds the typical thermal diffusive timescale in the overshooting layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.