Four decades after its prediction, the axion remains the most compelling solution to the Strong-CP problem and a well-motivated dark matter candidate, inspiring a host of elegant and ultrasensitive experiments based on axion-photon mixing. This report reviews the experimental situation on several fronts. The microwave cavity experiment is making excellent progress in the search for dark matter axions in the microelectronvolt range and may be plausibly extended up to 100 µeV. Within the past several years however, it has been realized that axions are pervasive throughout string theories, but with masses that fall naturally in the nanoelectronvolt range, for which a NMR-based search is under development. Searches for axions emitted from the Sun's burning core, and purely laboratory experiments based on photon regeneration have both made great strides in recent years, with ambitious projects proposed for the coming decade. Each of these campaigns has pushed the state of the art in technology, enabling large gains in sensitivity and mass reach. Furthermore each modality has also been exploited to search for more generalized axion-like particles, that will also be discussed in this report. We are hopeful, even optimistic, that the next review of the subject will concern the discovery of the axion, its properties, and its exploitation as a probe of early universe cosmology and structure formation.
The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics.ii 7 Physics reach of PBC projects 66 8 Physics reach of PBC projects in the sub-eV mass range 66 8.1 Axion portal with photon dominance (BC9) 66 9 Physics reach of PBC projects in the MeV-GeV mass range 73 9.1 Vector Portal 78 9.1.1 Minimal Dark Photon model (BC1) 78 9.1.2 Dark Photon decaying to invisible final states (BC2) 83 9.1.3 Milli-charged particles (BC3) 90 9.2 Scalar Portal 93 9.2.1 Dark scalar mixing with the Higgs (BC4 and BC5) 93 9.3 Neutrino Portal 97 9.3.1 Neutrino portal with electron-flavor dominance (BC6) 98 9.3.2 Neutrino portal with muon-flavor dominance (BC7) 101 9.3.3 Neutrino portal with tau-flavor dominance (BC8) 103 9.4 Axion Portal 106 9.4.1 Axion portal with photon-coupling (BC9) 106 9.4.2 Axion portal with fermion-coupling (BC10) 110 9.4.3 Axion portal with gluon-coupling (BC11) 113 10 Physics reach of PBC projects in the multi-TeV mass range 115 10.1 Measurement of EDMs as probe of NP in the multi TeV scale 115 10.2 Experiments sensitive to Flavour Violation 116 10.3 B physics anomalies and BR(K → πνν) 120 11 Conclusions and Outlook 121 A ALPS: prescription for treating the FCNC processes 123 B ALPs: production via π 0 , η, η mixing 126 Executive SummaryThe main goal of this document follows very closely the mandate of the Physics Beyond Colliders (PBC) study group, and is "an exploratory study aimed at exploiting the full scientific potential of CERN's accelerator complex and its scientific infrastructure through projects complementary to the LHC, HL-LHC and other possible future colliders. These projects would target fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that require different types of beams and experiments 1 ". Fundamental questions in modern particle physics as the origin of the neutrino masses and oscillations, the nature of Dark Matter and the explanation of the mechanism that drives the baryogenesis are still open today and do require an answer.So far an unambiguous signal of New Physics (NP) from direct searches at the Large Hadron Collider (LHC), indirect searches in flavour physics and direct detection Dark Matter experiments is absent. Moreover, theory provides no clear guidance on the NP scale. This imposes today, more than ever, a broadening of the experimental effort in the quest for NP. We need to explore different ranges of interaction strengths and masses with respect to what is already covered by existing or planned initiatives.Low-mass and very-weakly coupled particles represent an attractive possibility, theoretically and phenomenologically well motivated, but currently poorly explored: a systematic investigation should be pursued in the next decades both at acc...
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and lowcost experimental program has been identified that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.
A physicist discusses how to visualize a molecule changing shape.
This document constitutes an excerpt of the Technical Design Report for the second stage of the "Any Light Particle Search" (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a "Light Shining through a Wall" experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.