The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tan β and, in some scenarios, on the masses of neutral Higgs bosons.
The reaction e+e~e+e m. m has been analyzed using 97 pb ' of data taken with the Crystal Ball detector at the DESY e e+ storage ring DORIS II at beam energies around 5.3 GeV. For the first time we have measured the cross section for yy~m. m. for n m invariant masses ranging from threshold to about 2 GeV. We measure an approximately flat cross section of about 10 nb for 8'=m 0 0 (0.8 GeV, which is below 0.6 GeV, in good agreement with a theoretical prediction 'tr n' based on an unitarized Born-term model. At higher invariant masses we observe formation of the ft(1270) resonance and a hint of the fo(975). We deduce the following two-photon widths: I rr(f, (1270)) =3.19+0. 1620 z, keV and I "(fo( 975)) (0.53 keV at 90% CL. The decayangular distributions show the m~system to be dominantly spin 0 for W &0.7 GeV and spin 2, helicity 2 in the f, (1270) region, with helicity 0 contributing at most 22% (90% C.L.).
In this Report, QCD results obtained from a study of hadronic event structure in high energy e+e− interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, alpha_s, from hadronic event shapes and the\ud
study of effects of soft gluon coherence in charged particle multiplicity and momentum distributions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.