Dyskeratosis congenita is a progressive bone-marrow failure syndrome that is characterized by abnormal skin pigmentation, leukoplakia and nail dystrophy. X-linked, autosomal recessive and autosomal dominant inheritance have been found in different pedigrees. The X-linked form of the disease is due to mutations in the gene DKC1 in band 2, sub-band 8 of the long arm of the X chromosome (ref. 3). The affected protein, dyskerin, is a nucleolar protein that is found associated with the H/ACA class of small nucleolar RNAs and is involved in pseudo-uridylation of specific residues of ribosomal RNA. Dyskerin is also associated with telomerase RNA (hTR), which contains a H/ACA consensus sequence. Here we map the gene responsible for dyskeratosis congenita in a large pedigree with autosomal dominant inheritance. Affected members of this family have an 821-base-pair deletion on chromosome 3q that removes the 3' 74 bases of hTR. Mutations in hTR were found in two other families with autosomal dominant dyskeratosis congenita.
We have identified a missense mutation in the motor domain of the neuronal kinesin heavy chain gene KIF5A, in a family with hereditary spastic paraplegia. The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding. Mutation of kinesin orthologues in various species leads to phenotypes resembling hereditary spastic paraplegia. The conventional kinesin motor powers intracellular movement of membranous organelles and other macromolecular cargo from the neuronal cell body to the distal tip of the axon. This finding suggests that the underlying pathology of SPG10 and possibly of other forms of hereditary spastic paraplegia may involve perturbation of neuronal anterograde (or retrograde) axoplasmic flow, leading to axonal degeneration, especially in the longest axons of the central nervous system.
Atrial septal defect is one of the most common forms of congenital heart malformation. We identified a new locus linked with atrial septal defect on chromosome 14q12 in a large family with dominantly inherited atrial septal defect. The underlying mutation is a missense substitution, I820N, in alpha-myosin heavy chain (MYH6), a structural protein expressed at high levels in the developing atria, which affects the binding of the heavy chain to its regulatory light chain. The cardiac transcription factor TBX5 strongly regulates expression of MYH6, but mutant forms of TBX5, which cause Holt-Oram syndrome, do not. Morpholino knock-down of expression of the chick MYH6 homolog eliminates the formation of the atrial septum without overtly affecting atrial chamber formation. These data provide evidence for a link between a transcription factor, a structural protein and congenital heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.