Certain β-adrenergic blockers have proven useful in the regression of ventricular remodeling when administered as long-term treatment. However, early regression of left ventricular hypertrophy (LVH) has not been reported, following short-term administration of these drugs. We tested the hypothesis that short-term administration of the cardioselective β-blocker esmolol induces early regression of LVH in spontaneously hypertensive rats (SHR). Fourteen-month-old male SHRs were treated i.v. with vehicle (SHR) or esmolol (SHR-E) (300 μg kg(-1) min(-1)). Age-matched vehicle-treated male Wistar-Kyoto (WKY) rats served as controls. After 48 h, left ventricular morphology and function were assessed using M-mode echocardiograms (left ventricular mass index (LVMI), ejection fraction and transmitral Doppler (early-to-atrial filling velocity ratio (E/A), E-wave deceleration time (Edec time)). The standardized uptake value (SUV) was applied to evaluate FDG (2-deoxy-2[18F]fluoro-D-glucose) uptake by the heart using PET/CT. Left ventricular subendocardial and subepicardial biopsies were taken to analyze changes in cross-sectional area (CSA) of left ventricular cardiomyocytes and the fibrosis was expressed as collagen volume fraction (CVF). LVMI was lower in SHR-E with respect to SHR (P=0.009). There were no significant differences in EF, E/A ratio or Edec time in SHR-E compared with SHR (P=0.17, 0.55 and P=0.80, respectively). PET acquisitions in SHR-E showed lower (18)F-FDG uptake than SHR (P=0.003). Interestingly, there were no significant differences in SUV in either SHR-E or WKY (P=0.63). CSA in subendocardial and subepicardial regions was minor in SHR-E with respect to SHR (P<0.001), and there were no significant differences in CVF between both groups. Esmolol reverses early LVH in the SHR model of stable compensated ventricular hypertrophy. This is the first study to associate early regression of LVH with administration of a short-term β-blocker.
The aim of this study was to assess the effects of short-term esmolol therapy on coronary artery structure and function and plasma oxidative stress in spontaneously hypertensive rats (SHR). For this purpose, 14-month-old male SHR were treated for 48 hours with esmolol (SHR-E, 300 μg/kg/min). Age-matched untreated male SHR and Wistar Kyoto rats (WKY) were used as hypertensive and normotensive controls, respectively. At the end of intervention we performed a histological study to analyze coronary artery wall width (WW), wall-to-lumen ratio (W/L), and media cross-sectional area (MCSA). Dose-response curves for acetylcholine (ACh) and sodium nitroprusside were constructed. We also assessed several plasma oxidative stress biomarkers, namely, superoxide scavenging activity (SOSA), nitrites, and total antioxidant capacity (TAC). We observed a significant reduction in WW (P < 0.001), W/L (P < 0.05), and MCSA (P < 0.01) and improved endothelium-dependent relaxation (AUCSHR-E = 201.2 ± 33 versus AUCSHR = 97.5 ± 21, P < 0.05) in SHR-E compared with untreated SHR; no differences were observed for WW, MCSA, and endothelium-dependent relaxation by ACh at higher concentrations (10−6 to 10−4 mol/l) for SHR-E with respect to WKY. SOSA (P < 0.001) and nitrite (P < 0.01) values were significantly higher in SHR-E than in untreated SHR; however, TAC did not increase after treatment with esmolol. Esmolol improves early coronary artery remodeling in SHR.
The objective of this study was to investigate the anatomy, both macroscopic and microscopic, of the soft tissue internal structures of the hip joint in animal species and in three human hips (an adult and two fetuses). We dissected the hip joints of 16 species and compared the anatomical features of the soft tissue from the respective acetabula. In addition, a histological study was made of the specimens studied. In amphibians, we found a meniscus in the acetabulum, which was not observed in any of the other species studied. The isolated round ligament is observed from birds onwards. In the group of mammals analysed, including the human specimens, we found a meniscoid structure in the acetabular hip joint. Furthermore, we found that the meniscoid structure forms an anatomo-functional unit with the round ligament and the transverse ligament of the coxofemoral joint. These discoveries suggest the participation of the soft tissue anatomy in adaptative changes of species.
Positron emission tomography (PET) is useful for evaluating the cardiac metabolism of free fatty acid, glucose and oxygen both in human clinical practice and in experimental animal models. However, no data are available for such an evaluation in a model of stable compensated left ventricular hypertrophy in 14-month-old spontaneously hypertensive rats (SHRs). This study was designed to assess the metabolism of myocardial glucose in SHRs using 2-deoxy-2-[18F]fluoro-D-glucose ( 18 F-FDG) using PET. The study was performed on 14-monthold male SHRs (n ¼ 4) and age-matched Wistar Kyoto (WKY) rats (n ¼ 4). PET scans were performed after the administration of anaesthesia with isoflurane and injection of a bolus of 39.37 AE 3.25 (mean AE SD) MBq (1.06 mCi) of 18 F-FDG. The standardized uptake value (SUV) was used to evaluate 18 F-FDG uptake by the heart. The analysis of SUV showed increased metabolism in the left ventricle of SHRs compared with WKY rats. Our results show that small animal PET using 18 F-FDG can be performed in 14-month-old SHRs to evaluate new therapies in the regression of left ventricular hypertrophy in SHRs because pathological myocardial metabolism in the SHR differs from the normal metabolism of the WKY rat.Keywords cardiac metabolism, 18 F-FDG-PET, ventricular hypertrophy, spontaneously hypertensive rats Small animal positron emission tomography (PET) makes it possible to investigate myocardial metabolism in experimental animal models in much the same way as in the human heart. Altered fatty acid and carbohydrate metabolism in the myocardium have been associated with cardiovascular disease (chronic ischaemic heart disease, dilated cardiomyopathy and ventricular hypertrophy).1 Under normal conditions, the heart uses glucose (30%), fatty acids (60%) and lactate (10%) as primary energy sources; however, glucose metabolism is increased in cardiac hypertrophy.2 Consistent with this observation, several studies have shown a higher rate of glucose uptake in animal models of cardiac hypertrophy.3-5 However, data are not available for spontaneously hypertensive rats (SHRs), which are a model of hypertension-induced left ventricular hypertrophy (LVH), 6 analysed using PET. The aim of our study was to explore myocardial glucose metabolism in 14-month-old male SHRs using 2-deoxy-2-[18F]fluoro-D-glucose ( 18 F-FDG) using PET. We evaluated the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.