Various proteins introduced into living modified organism (LMO) crops function in plant defense mechanisms against target insect pests or herbicides. This study analyzed the antifungal effects of an introduced LMO protein, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4-EPSPS). Pure recombinant CP4-EPSPS protein, expressed in Escherichia coli, inhibited the growth of human and plant fungal pathogens (Candida albicans, C. tropicalis, C. krusei, Colletotrichum gloeosporioides, Fusarium solani, F. graminearum, and Trichoderma virens), at minimum inhibitory concentrations (MICs) that ranged from 62.5 to 250 µg/mL. It inhibited fungal spore germination as well as cell proliferation on C. gloeosporioides. Rhodamine-labeled CP4-EPSPS accumulated on the fungal cell wall and within intracellular cytosol. In addition, the protein induced uptake of SYTOX Green into cells, but not into intracellular mitochondrial reactive oxygen species (ROS), indicating that its antifungal action was due to inducing the permeability of the fungal cell wall. Its antifungal action showed cell surface damage, as observed from fungal cell morphology. This study provided information on the effects of the LMO protein, EPSPS, on fungal growth.
Cotton (Gossypium hirsutum L.) is grown worldwide for its natural hollow fibers and is used as cattle feed. Living modified (LM) cotton is not cultivated in South Korea and must be imported for food, feed, and processing. From 2009 to 2013, the Ministry of Environment (MOE) and the National Institute of Ecology (NIE) conducted a natural environment monitoring and post-management initiative for living modified organisms (LMOs) in some areas to reduce the likelihood of harmful effects caused by unintentionally discharged LMOs during transportation and use. In this study, we adopted a new strategy to identify unintentionally released LM cotton plants nationwide from 2014 to 2018. A total of 451 suspicious cotton samples were collected from 3921 survey sites. Among them, we identified 255 LM cotton plants, of which approximately 72.2% had transgenic herbicide and insecticide traits. The majority of the samples were collected from the roadside along transportation routes and from stockbreeding farms. This study establishes an LMO safety management system to efficiently maintain conservation efforts in South Korea. Our findings suggest that these efforts may play a key role in safely transporting, using, and managing approved LMOs, as well as in regulating unintentionally released LMOs, in order to preserve the natural ecosystem of South Korea.
Although considerable scientific research data is available for sepsis and cytokine storm syndrome, there is a need to develop new treatments or drugs for sepsis management. Antimicrobial peptides (AMPs) possess anti-bacterial and anti-inflammatory activity, neutralizing toxins such as lipopolysaccharides (LPS, endotoxin). Most AMPs have been designed as a substitute for conventional antibiotics, which kill drug-resistant pathogens. The present study aimed to determine the anti-inflammatory potential of 10 designed XIW (X: lysine, arginine, or glutamic acid) α-helical peptides in macrophages and a mouse model in the presence of LPS. Among them, WIKE-14, a peptide with a helix-to-helix structure, having the 12th amino acid substituted with glutamic acid, suppressed pro-inflammatory cytokines in RAW 264.7 macrophages. This reaction was mediated by the inhibition of the binding between LPS and macrophages. In addition, the WIKE-14 peptide exhibited a potent anti-inflammatory activity in mice ears and lungs inflamed using LPS. Thus, our results may provide useful insights for the development of anti-sepsis agents via the sequence and structure information of the WIKE-14 peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.