We report here on a detailed study on PbS colloidal quantum dots. A characterization via X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) allowed us to reliably determine the diameter and the shape of the nanocrystals. These data, together with second-derivative analysis of the absorption spectra, allowed us to determine the size dependence of seven transitions in the absorption spectrum; some of these transitions were identified on the basis of their normalized confinement energy. The size dependence of the first excitonic transition was best modeled by a four-band envelope approach which considers the anisotropy of the band edges (Andreev, A. D.; Lipovskii, A. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 15402-15404). The extinction coefficients were calculated using concentrations obtained from inductively coupled plasma atomic emission spectrometry (ICP-AES), and their size dependence was found to follow a power law with exponent equal to approximately 2.5. In contrast with what was expected from the effective mass approximation, the per particle absorption cross section of the lowest transition was found to be strongly dependent on the particle size.
Magnetic fields change the way that electrons move through solids. The nature of these changes reveals information about the electronic structure of a material and, in auspicious circumstances, can be harnessed for applications. The silver chalcogenides, Ag2Se and Ag2Te, are non-magnetic materials, but their electrical resistance can be made very sensitive to magnetic field by adding small amounts--just 1 part in 10,000--of excess silver. Here we show that the resistance of Ag2Se displays a large, nearly linear increase with applied magnetic field without saturation to the highest fields available, 600,000 gauss, more than a million times the Earth's magnetic field. These characteristics of large (thousands of per cent) and near-linear response over a large field range make the silver chalcogenides attractive as magnetic-field sensors, especially in physically tiny megagauss (10(6) G) pulsed magnets where large fields have been produced but accurate calibration has proved elusive. High-field studies at low temperatures reveal both oscillations in the magnetoresistance and a universal scaling form that point to a quantum origin for this material's unprecedented behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.