Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much-improved energy resolution over the previous analysis and extends HAWC’s ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log-parabola shape
with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 m from the shower axis, the best-fit values are
(TeV cm2 s)−1,
, and
. For the second estimator, a neural network that uses the charge distribution in annuli around the core and other variables, these values are
(TeV cm2 s)−1,
, and β = 0.06 ± 0.01 ± 0.02. The first set of uncertainties is statistical; the second set is systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at ≥5σ significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1° of previously detected TeV emitters, and 20 sources that are more than 1° away from any previously detected TeV source. Of these 20 new sources, 14 have a potential counterpart in the fourth Fermi Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the Australia Telescope National Facility (ATNF) pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.