The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.
Abstract. We reported evidence of heavily hydrated salt minerals present over large areas of Europa's surface from analysis of reflectance spectra returned by the Galileo mission near infrared mapping spectrometer (NIMS) [McCord et al., 1997a[McCord et al., , b, 1998a. Here we elaborate on this earlier evidence, present spatial distributions of these minerals, examine alternate water-ice interpretations, expand on our hydrated-salts interpretation, consider salt mineral stability on Europa, and discuss the implications. Extensive well-defined areas on Europa show distinct, asymmetric water-related absorption bands in the 1 to 2.5-gm region. Radiative transfer modeling of water ice involving different particle sizes and layers at Europa temperatures does not reproduce the distinctive Europa water bands. However, ice near its melting temperature, such as in terrestrial environments, does have some characteristics of the Europa spectrum. Alternatively, some classes of heavily hydrated minerals do exhibit such water bands. Among plausible materials, heavily hydrated salt minerals, such as magnesium and sodium sulfates, sodium carbonate and their mixtures, are preferred. All Europa spectral features are present in some salt minerals and a very good match to the Europa spectrum can be achieved by mixing several salt spectra. However, no single or mix of salt mineral spectra from the limited library available has so far been found to perfectly match the Europa spectrum in every detail. The material is concentrated at the lineaments and in chaotic terrain, which are tectonically disrupted areas on the trailing side. Since the spectrum of the material on Europa is nearly the same everywhere so-far studied, the salt or salt-mixture composition may be nearly uniform. This suggests similar sources and processes over at least a near-hemispheric scale. This would suggest that an extensive subsurface ocean containing dissolved salts is the source, and several possible mechanisms for deposit emplacement are considered. The hydrogen bonds associated with hydration of these salts are similar or greater in strength and energy to those in pure water ice. Thus, once on the surface, the salt minerals should be as stable to disruption as water ice at the Europa temperatures, and mechanisms are suggested to enhance the stability of both materials. Spectra obtained of MgSO4o6H20 at 77 K show only small differences from room temperature spectra. The main difference is the appearance of the individual absorptions composing the broad, composite water features and associated with the several different H20 sites in the salt hydrate molecule. This suggests that the Europa absorption bands are also composites. Thus higher spectral resolution may reveal these diagnostic features in Europa's spectrum. The specific salts present and their relative abundances would be indicators of the chemistry and conditions of an ocean environment, and areas of fresh, heavy concentration of these minerals should make ideal lander mission sampling sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.