We present the second catalog of high-energy γ -ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ -ray-producing source classes.
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and lowredshift starburst galaxies (conservative P-values 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L 0.1−100 GeV /L 1.4 GHz ) = 1.7 ± 0.1 (statistical) ± 0.2 (dispersion) and log(L 0.1−100 GeV /L 8−1000 µm ) = −4.3 ± 0.1 (statistical) ± 0.2 (dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr −1 , assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 ×10 −6 ph cm −2 s −1 sr −1 (4-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ∼ 10 galaxies could be detected by their cosmic-ray induced gamma-ray emission during a 10-year Fermi mission.
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26) cm3 s(-1) at 5 GeV to about 5×10(-23) cm3 s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26) cm3 s(-1) for a purely s-wave cross section), without assuming additional boost factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.