We report the complete genome sequence of the deep-sea ␥-proteobacterium, Idiomarina loihiensis, isolated recently from a hydrothermal vent at 1,300-m depth on the Lo ihi submarine volcano, Hawaii. The I. loihiensis genome comprises a single chromosome of 2,839,318 base pairs, encoding 2,640 proteins, four rRNA operons, and 56 tRNA genes. A comparison of I. loihiensis to the genomes of other ␥-proteobacteria reveals abundance of amino acid transport and degradation enzymes, but a loss of sugar transport systems and certain enzymes of sugar metabolism. This finding suggests that I. loihiensis relies primarily on amino acid catabolism, rather than on sugar fermentation, for carbon and energy. Enzymes for biosynthesis of purines, pyrimidines, the majority of amino acids, and coenzymes are encoded in the genome, but biosynthetic pathways for Leu, Ile, Val, Thr, and Met are incomplete. Auxotrophy for Val and Thr was confirmed by in vivo experiments. The I. loihiensis genome contains a cluster of 32 genes encoding enzymes for exopolysaccharide and capsular polysaccharide synthesis. It also encodes diverse peptidases, a variety of peptide and amino acid uptake systems, and versatile signal transduction machinery. We propose that the source of amino acids for I. loihiensis growth are the proteinaceous particles present in the deep sea hydrothermal vent waters. I. loihiensis would colonize these particles by using the secreted exopolysaccharide, digest these proteins, and metabolize the resulting peptides and amino acids. In summary, the I. loihiensis genome reveals an integrated mechanism of metabolic adaptation to the constantly changing deep-sea hydrothermal ecosystem.hydrothermal vent
The Hawaiian Archipelago is a "biodiversity hotspot" where significant endemism among eukaryotes has evolved through geographic isolation and local topography. To address the absence of corresponding region-wide data on Hawaii's microbiota, we compiled the first 16S SSU rDNA clone libraries and cultivated bacteria from five Hawaiian lakes, an anchialine pool, and the Lō'ihi submarine volcano. These sites offer diverse niches over approximately 5000 m elevation and approximately 1150 nautical miles. Each site hosted a distinct prokaryotic community dominated by Bacteria. Cloned sequences fell into 158 groups from 18 Bacteria phyla, while seven were unassigned and two belonged in the Euryarchaeota. Only seven operational taxonomic units (each OTU comprised sequences that shared > or =97% sequence identity) occurred in more than one site. Pure bacterial cultures from all sites fell into 155 groups (each group comprised pure cultures that shared > or =97% 16S SSU rDNA sequence identity) from 10 Bacteria phyla; 15 Proteobacteria and Firmicutes were cultivated from more than one site. One hundred OTUs (60%) and 52 (33.3%) cultures shared <97% 16S SSU rDNA sequence identity with published sequences. Community structure reflected habitat chemistry; most delta-Proteobacteria occurred in anoxic and sulfidic waters of one lake, while beta-Proteobacteria were cultivated exclusively from fresh or brackish waters. Novel sequences that affiliate with an Antarctic-specific clade of Deinococci, and Candidate Divisions TM7 and BRC1, extend the geographic ranges of these phyla. Globally and locally remote, as well as physically and chemically diverse, Hawaiian aquatic habitats provide unique niches for the evolution of novel communities and microorganisms.
Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.