[1] This paper provides a review of stratosphere-troposphere exchange (STE), with a focus on processes in the extratropics. It also addresses the relevance of STE for tropospheric chemistry, particularly its influence on the oxidative capacity of the troposphere. After summarizing the current state of knowledge, the objectives of the project Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity (STACCATO), recently funded by the European Union, are outlined. Several papers in this Journal of Geophysical ResearchAtmospheres special section present the results of this project, of which this paper gives an overview. STACCATO developed a new concept of STE in the extratropics, explored the capacities of different types of methods and models to diagnose STE, and identified their various strengths and shortcomings. Extensive measurements were made in central Europe, including the first monitoring over an extended period of time of beryllium-10 ( 10 Be), to provide a suitable database for case studies of stratospheric intrusions and for model validation. Photochemical models were used to examine the impact of STE on tropospheric ozone and the oxidizing capacity of the troposphere. Studies of the present interannual variability of STE and projections into the future were made using reanalysis data and climate models.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
[1] Regular aerosol extinction and backscatter measurements using a UV Raman lidar have been performed from January 2001 to December 2004 at Thessaloniki, Greece (40.5°N, 22.9°E), in the framework of the European Aerosol Research Lidar Network (EARLINET). Profiles of the aerosol extinction coefficient, backscatter coefficient, and extinction-to-backscatter ratio (so-called ''lidar ratio'') were acquired under nighttime conditions and have been used for statistical investigations. The statistical analysis was made both for the planetary boundary layer and for the free troposphere. It was found that the 4-year mean boundary layer particle optical depth at 355 nm was 0.44 ± 0.18, and the total aerosol optical depth was 0.63 ± 0.27. Free tropospheric particles account on the average for 30% of the total aerosol optical depth, ranging from 5% (clean free troposphere conditions) to 55% (mainly Saharan dust events). For the cases examined, the integral of the lidar-derived extinction coefficient was in good agreement with colocated aerosol optical depth measurements at 355 nm obtained with a Brewer spectroradiometer. The mean value of the lidar ratio at 355 nm derived, for the period of measurements at Thessaloniki, was 40 sr with a standard deviation of 21 sr. Mean height profiles of the particle lidar ratio, extinction, and backscatter coefficients are shown along with their seasonal dependence, showing a significant seasonal variability in the free troposphere. An analysis of the data using back trajectories showed also a dependence of the aerosol optical depth and the lidar ratio on the origin of the air mass, with higher values mostly corresponding to air masses originating from the northeast Balkans and eastern Europe.Citation: Amiridis, V
An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty. One of these profiles contained height-dependent lidar ratios to test the vertical influence of those profiles on the various retrieval algorithms. Furthermore, a realistic incomplete overlap of laser beam and receiver field of view was introduced to remind the teams to take great care in the nearest range to the lidar. The intercomparison was performed in three stages with increasing knowledge on the input parameters. First, only the lidar signals were distributed; this is the most realistic stage. Afterward the lidar ratio profiles and the reference values at calibration height were provided. The unknown height-dependent lidar ratio had the largest influence on the retrieval, whereas the unknown reference value was of minor importance. These results show the necessity of making additional independent measurements, which can provide us with a suitable approximation of the lidar ratio. The final stage proves in general, that the data evaluation schemes of the different groups of lidar systems work well.
We present the results of the aerosol measurements carried out over the Aegean Sea during the Photochemical Activity and Solar Ultraviolet Radiation campaign held in Greece during June 1996. Simultaneous observations performed with a lidar and a double-monochromator spectrophotometer allowed us to retrieve the optical depth, the Angström coefficient, and the backscatter-to-extinction ratio. The Sun photometric data can be used to improve quantitative aerosol measurements by lidar in the Planetary Boundary Layer. Systematic errors could arise otherwise, because the value of the backscatter-to-extinction ratio has to be supplied. Instead this ratio can be retrieved experimentally by use of an iterative solution of the lidar equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.