Chiral poly(3-(3,7-dimethyloctyloxy)thiophene)s were prepared using three different methodologies, rendering polymers with different degrees of regioregularity. In a first attempt, 3alkoxythiophene was polymerized using FeCl 3 , resulting in a highly regioirregular poly(3alkoxythiophene).Secondly, the GRIM methodology was applied, which yielded poly(3alkoxythiophene)s with relatively high, but not perfect, degrees of regioregularity. Finally, an alternative methodology was used, which consisted of the exclusive formation and subsequent 2 polymerization of 2-bromomagnesio-3-(3,7-dimethyloctyloxy)-5-bromothiophene) and which resulted in poly(3-alkoxythiophene)s with (almost) perfect regioregularity. The degrees of regioregularity were evaluated with 1 H NMR, UV-Vis and CD spectroscopy and cyclic voltammetry. These (regioregular) poly(3-alkoxythiophene)s show a very high λ max , indicating very high conjugation lengths. Moreover, the polymers could easily be oxidized and they were stable in both neutral as well as oxidized state.This stability can be correlated with the decrease in oxidation potential. The reproducibility and reversibility of the oxidation was demonstrated by UV-Vis spectroscopy. Finally, the chiral properties of the polymers were investigated with circular dichroism spectroscopy. These experiments demonstrated again the difference in regioregularity of the polymers.
Mono- and multilayers of amphiphilic [Ru(phen)(2)(dcC12bpy)](2+) (phen = 1,10-phenanthroline, dcC12bpy = 4,4'-caboxyl-2,2'-bipyridyl didodecyl ester) hybridized with a clay mineral have been prepared by a modified Langmuir-Blodgett method, and their structures and properties have been investigated. Formation of a hybrid monolayer of the Ru(II) complex cations and the clay platelets at an air-clay suspension interface was confirmed by surface pressure-molecular area (pi-A) isotherm measurement and atomic force microscopic (AFM) observation. Multilayers were fabricated by depositing the hybrid monolayers onto glass substrates. The absorbance at 492 nm due to the Ru(II) complex cation in the multilayer increased linearly with the increase in the layer number, indicating layer-by-layer deposition of the hybrid monolayers. Because no increase in the second-harmonic generation (SHG) signal from the multilayers against the layer number was observed, the orientation of the Ru(II) complex cations in the layer would be disturbed. The hydrophilic surface of the transferred hybrid monolayer can be converted to a hydrophobic surface by dipping it in an aqueous solution of octadecylammonium chloride (ODAH(+)Cl(-)). The multilayers modified with ODAH(+) showed a quadratic relation between the SHG intensity and the layer number. This means that the Ru(II) complex cations in the multilayer are successfully oriented in a noncentrosymmetric way by the conversion of the surface property. Both a racemic mixture and an enantiomer of the Ru(II) complex cations were employed to examine the chiral effect on the film properties. The chiral contribution to the SHG signal was enhanced in the multilayer modified with ODAH(+).
A combination of cyclic voltammetry (CV), UV-vis-NIR spectroscopy and spectroelectrochemistry, hyper-Rayleigh scattering (HRS) [including depolarization studies], Z-scan and degenerate four-wave mixing (DFWM) [including studies employing an optically transparent thin-layer electrochemical (OTTLE) cell to effect electrochemical switching of nonlinearity], pump-probe, and electroabsorption (EA) measurements have been used to comprehensively investigate the electronic, linear optical, and nonlinear optical (NLO) properties of nanoscopic pi-delocalizable electron-rich alkynylruthenium dendrimers, their precursor dendrons, and their linear analogues. CV, UV-vis-NIR spectroscopy, and UV-vis-NIR spectroelectrochemistry reveal that the reversible metal-centered oxidation processes in these complexes are accompanied by strong linear optical changes, "switching on" low-energy absorption bands, the frequency of which is tunable by ligand replacement. HRS studies at 1064 nm employing nanosecond pulses reveal large nonlinearities for these formally octupolar dendrimers; depolarization measurements are consistent with lack of coplanarity upon pi-framework extension through the metal. EA studies at 350-800 nm in a poly(methyl methacrylate) matrix are consistent with the important transitions having a charge-transfer exciton character that increases markedly on introduction of peripheral polarizing substituent. Time-resolved pump-probe studies employing 55 ps, 527 nm pulses reveal absorption saturation, the longest excited-state lifetime being observed for the dendrimer. Z-scan studies at 800 nm employing femtosecond pulses reveal strong two-photon absorption that increases significantly on progression from linear complex to zero- and then first-generation dendrimer with no loss of optical transparency. Both refractive and absorptive nonlinearity for selected alkynylruthenium dendrimers have been reversibly "switched" by employing the Z-scan technique at 800 and 1180 nm and 100-150 fs pulses, together with a specially modified OTTLE cell, complementary femtosecond time-resolved DFWM and transient absorption studies at 800 nm suggesting that the NLO effects originate in picosecond time scale processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.