The ‘Progress in the ITER Physics Basis’ (PIPB) document is an update of the ‘ITER Physics Basis’ (IPB), which was published in 1999 [1]. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modelling and theoretical activities carried out on today's large tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the Participant Teams of ITER (the European Union, Japan, Russia and the USA), for which International Tokamak Physics Activities (ITPA) provided a forum of scientists, focusing on open issues pointed out in the IPB. The new methodologies of projection and control are applied to ITER, which was redesigned under revised technical objectives. These analyses suggest that the achievement of Q > 10 in the inductive operation is feasible. Further, improved confinement and beta observed with low shear (= high βp = ‘hybrid’) operation scenarios, if achieved in ITER, could provide attractive scenarios with high Q (> 10), long pulse (>1000 s) operation with beta
Significant progress has been made in the area of advanced modes of operation that are candidates for achieving steady state conditions in a fusion reactor. The corresponding parameters, domain of operation, scenarios and integration issues of advanced scenarios are discussed in this chapter. A review of the presently developed scenarios, including discussions on operational space, is given. Significant progress has been made in the domain of heating and current drive in recent years, especially in the domain of off-axis current drive, which is essential for the achievement of the required current profile. The actuators for heating and current drive that are necessary to produce and control the advanced tokamak discharges are discussed, including modelling and predictions for ITER. The specific control issues for steady state operation are discussed, including the already existing experimental results as well as the various strategies and needs (qψ profile control and temperature gradients). Achievable parameters for the ITER steady state and hybrid scenarios with foreseen heating and current drive systems are discussed using modelling including actuators, allowing an assessment of achievable current profiles. Finally, a summary is given in the last section including outstanding issues and recommendations for further research and development.
As part of the ITER Design Review, the physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.
Two approaches are examined for stabilization of the resistive wall mode (RWM) of toroidal mode number n = 1 in an advanced ITER scenario. Active feedback control, with the present coil design and poloidal sensors placed just inside the inner wall, can be very efficient in stabilizing the RWM. Within the voltage limit of the present design for the feedback coils and conservative constraints on performance, the plasma pressure can be increased up to at least 70% between the no-wall and ideal-wall beta limits. Stabilization of the RWM by toroidal plasma rotation depends on the rotation profile as well as on the model for ion Landau damping. Feedback control of rotating plasmas for the advanced scenario is considered. The effect of the blanket is also studied using a simplified model.
Abstract. The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low l i (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.