We study the nonlinear Raman-Nath diffraction (NRND) of femtosecond laser pulses in a 1D periodic nonlinear photonic structure. The calculated second-harmonic spectra represent frequency combs for different orders of transverse phase matching. These frequency combs are in close analogy with the well-known spectral Maker fringes observed in single crystals. The spectral intensity of the second harmonic experiences a redshift with a propagation angle, which is opposite the case of Čerenkov nonlinear diffraction. We analyze how NRND is affected by the group-velocity mismatch between fundamental and second-harmonic pulses and by the parameters of the structure. Our experimental results prove the theoretical predictions.
Potassium titanyl phosphate KTiOPO4 (KTP) crystals with periodical ferroelectric domain structures are one of the most promising materials for nonlinear optics, in which the main types of nonlinear optical interactions have been demonstrated. Despite the crucial importance of the in situ visualization of domain structure kinetics for creation of high quality periodical domain gratings, there are only a few works concerning KTP. We present the results of in situ visualization of domain kinetics in KTP with the time resolution down to 12.5 μs and simultaneous recording of the switching current data. The wide range of wall velocities with two orders of magnitude difference was observed for switching in a uniform electric field. The kinetic maps allowed analyzing the spatial distribution of wall motion velocities and classifying the walls by velocity ranges. The distinguished slow, fast, and superfast types of domain walls differed by their orientation. It was shown that the fast and slow domain walls provided the smooth input to the switching current, whereas the short-lived superfast walls resulted in short current peaks. The mobility and the threshold fields for all types of domain walls were estimated. The revealed increase in the wall velocity with deviation from low-index crystallographic planes for slow and fast walls was considered in terms of determined step generation and anisotropic kink motion. The obtained results are important for further development of domain engineering in KTP required for creation of high power, reliable, and effective coherent light sources.
Results of studying the domain structure of planar Ni microparticles formed on single-crystal substrates from the lithium niobate and from the potassium titanyl phosphate at different temperatures are presented. The dependence of domain sizes on the sample temperature was studied. It is shown the observed change of the domain structure is caused by the magnetoelastic effect, which arises due to the difference in the thermal expansion coefficients of the substrate and microparticles as the sample temperature changes. It is shown, the sizes of magnetic domains, up to the creation of a state with a quasi-homogeneous magnetization may be set by the substrate temperature during the microparticles formation. Keywords: magnetoelastic effect, magnetic force microscopy, remagnetization, lithium niobate, potassium titanyl phosphate, temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.