Rice bran was incorporated into lowdensity polyethylene (LDPE) at different concentrations by compounding in a twin-screw extruder and blown into films of uniform thickness. The rice bran incorporation influenced physical, mechanical, barrier, optical, thermal properties, and biodegradation of LDPE. The mechanical and optical properties decreased as the percentage of rice bran increased. The effect of rice bran on the morphology of LDPE blends was examined using scanning electron microscopy. Oxygen transmission rate and water vapor transmission rate increased with the increased content of rice bran. Addition of rice bran did not alter the melting temperature (T m ) of the blends; however the thermal stability decreased, while glass transition temperature (T g ) increased. Kinetics of thermal degradation was also investigated and the activation energy for thermal degradation indicated that for up to 10% filler addition, the dispersion and interfacial adhesion of rice bran particles in LDPE was good. Aerobic biodegradation tests using municipal sewage sludge and biodegradation studies using specific microorganism (Streptomyces species) revealed that the films are biodegradable.
This study explained about machining parameters of Al5086/Flyash/Sic hybrid metal matrix composites by the Taguchi technique. Al5086 reinforced in SiC (5–10 wt %) and 8% weight of flyash are retained as constants. The specimens are prepared with the help of the stir casting method. The material removal rate was examined by electrochemical machining under various parameters such as feed rate (0.15–0.30 mm/min), voltage (10–20 V), and electrolyte concentration (20–35 g/litre). Taguchi’s L16 orthogonal array was selected for design of experiments (DOEs), and 16 experimental tests were conducted to examine the effect of the selected machining parameters employed to identify the best optimal levels and also to investigate the effect of electrochemical machining parameters on MRR determined by Minitab-18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.