Gamma-ray bursts (GRBs) are divided into two populations [1, 2]; long GRBs that derive from the core-collapse of massive stars [e.g., 3] and short GRBs that form in the merger of two compact objects [4]. While it is common to divide the two populations at a γ-ray duration of two seconds, classification based on duration does not always cleanly map to the progenitor. This is notable in the form of GRBs with bright,
We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005–2021, constituting all short GRBs for which host galaxy associations are feasible (≈60% of the total Swift short GRB population). We contribute 274 new multi-band imaging observations across 58 distinct GRBs and 26 spectra of their host galaxies. Supplemented by literature and archival survey data, the catalog contains 542 photometric and 42 spectroscopic data sets. The photometric catalog reaches 3σ depths of ≳24–27 mag and ≳23–26 mag for the optical and near-infrared bands, respectively. We identify host galaxies for 84 bursts, in which the most robust associations make up 56% (50/90) of events, while only a small fraction, 6.7%, have inconclusive host associations. Based on new spectroscopy, we determine 18 host spectroscopic redshifts with a range of z ≈ 0.15–1.5 and find that ≈23%–41% of Swift short GRBs originate from z > 1. We also present the galactocentric offset catalog for 84 short GRBs. Taking into account the large range of individual measurement uncertainties, we find a median of projected offset of ≈7.7 kpc, for which the bursts with the most robust associations have a smaller median of ≈4.8 kpc. Our catalog captures more high-redshift and low-luminosity hosts, and more highly offset bursts than previously found, thereby diversifying the population of known short GRB hosts and properties. In terms of locations and host luminosities, the populations of short GRBs with and without detectable extended emission are statistically indistinguishable. This suggests that they arise from the same progenitors, or from multiple progenitors, which form and evolve in similar environments. All of the data products are available on the Broadband Repository for Investigating Gamma-Ray Burst Host Traits website.
We present the discovery of the optical afterglow and host galaxy of the Swift short-duration gamma-ray burst (SGRB) GRB 181123B. Observations with Gemini-North starting ≈9.1 hr after the burst reveal a faint optical afterglow with i≈25.1 mag at an angular offset of 0 59±0 16 from its host galaxy. Using grizYJHK observations, we measure a photometric redshift of the host galaxy of =-+ z 1.77 0.17 0.30. From a combination of Gemini and Keck spectroscopy of the host galaxy spanning 4500-18000 Å, we detect a single emission line at 13390 Å, inferred as Hβ at z=1.754±0.001 and corroborating the photometric redshift. The host galaxy properties of GRB 181123B are typical of those of other SGRB hosts, with an inferred stellar mass of ≈9.1×10 9 M e , a mass-weighted age of ≈0.9 Gyr, and an optical luminosity of ≈0.9L *. At z=1.754, GRB 181123B is the most distant secure SGRB with an optical afterglow detection and one of only three at z>1.5. Motivated by a growing number of high-z SGRBs, we explore the effects of a missing z>1.5 SGRB population among the current Swift sample on delay time distribution (DTD) models. We find that lognormal models with mean delay times of ≈4-6 Gyr are consistent with the observed distribution but can be ruled out to 95% confidence, with an additional ≈one to five Swift SGRBs recovered at z>1.5. In contrast, power-law models with ∝t −1 are consistent with the redshift distribution and can accommodate up to ≈30 SGRBs at these redshifts. Under this model, we predict that ≈1/3 of the current Swift population of SGRBs is at z>1. The future discovery or recovery of existing high-z SGRBs will provide significant discriminating power on their DTDs and thus their formation channels.
We present the Australian Square Kilometre Array Pathfinder localization and follow-up observations of the host galaxy of the repeating fast radio burst (FRB) source, FRB 20201124A, the fifth such extragalactic repeating FRB with an identified host. From spectroscopic observations using the 6.5 m MMT Observatory, we derive a redshift z = 0.0979 ± 0.0001, a star formation rate inferred from Hα emission SFR(Hα) ≈ 2.1 M ⊙ yr−1, and a gas-phase metallicity of 12+log(O/H) ≈ 9.0. By jointly modeling the 12 filter optical−mid-infrared (MIR) photometry and spectroscopy of the host, we infer a median stellar mass of ∼2 × 1010 M ⊙, internal dust extinction A V ≈ 1–1.5 mag, and a mass-weighted stellar population age of ∼5–6 Gyr. Connecting these data to the radio and X-ray observations, we cannot reconcile the broadband behavior with strong active galactic nucleus activity and instead attribute the dominant source of persistent radio emission to star formation, likely originating from the circumnuclear region of the host. The modeling also indicates a hot dust component contributing to the MIR luminosity at a level of ∼10%–30%. We model the host galaxy’s star formation and mass assembly histories, finding that the host assembled >90% of its mass by 1 Gyr ago and exhibited a fairly constant SFR for most of its existence, with no clear evidence of past starburst activity.
Monitoring the cooling of neutron-star crusts heated during accretion outbursts allows us to infer the physics of the dense matter present in the crust. We examine the crust cooling evolution of the low-mass X-ray binary MXB 1659−29 up to ∼505 days after the end of its 2015 outburst (hereafter outburst II) and compare it with what we observed after its previous 1999 outburst (hereafter outburst I) using data obtained from the Swift, XMM-Newton, and Chandra observatories. The observed effective surface temperature of the neutron star in MXB 1659−29 dropped from ∼92 eV to ∼56 eV from ∼12 days to ∼505 days after the end of outburst II. The most recently performed observation after outburst II suggests that the crust is close to returning to thermal equilibrium with the core. We model the crust heating and cooling for both its outbursts collectively to understand the effect of parameters that may change for every outburst (e.g., the average accretion rate, the length of outburst, the envelope composition of the neutron star at the end of the outburst) and those which can be assumed to remain the same during these two outbursts (e.g., the neutron star mass, its radius). Our modelling indicates that all parameters were consistent between the two outbursts with no need for any significant changes. In particular, the strength and the depth of the shallow heating mechanism at work (in the crust) were inferred to be the same during both outbursts, contrary to what has been found when modelling the cooling curves after multiple outburst of another source, MAXI J0556−332. This difference in source behaviour is not understood. We discuss our results in the context of our current understanding of cooling of accretion-heated neutron-star crusts, and in particular with respect to the unexplained shallow heating mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.