We realize giant optical nonlinearity of a single plasmonic nanostructure which we call a split hole resonator (SHR). The SHR is the marriage of two basic elements of nanoplasmonics, a nanohole and a nanorod. A peak field intensity in the SHR occurs at the single tip of the nanorod inside the nanohole. The peak field is much stronger than those of the nanorod and nanohole, because the SHR field involves contributions from the following two field-enhancement mechanisms: (1) the excitation of surface plasmon resonances and (2) the lightning-rod effect. Here, we demonstrate the use of the SHR as a highly efficient nonlinear optical element for: (i) the generation of the third harmonic from a single SHR; (ii) the excitation of intense multiphoton luminescence from a single SHR.
Electroresistance in ferroelectric tunnel junctions is controlled by changes in the electrostatic potential profile across the junction upon polarization reversal of the ultrathin ferroelectric barrier layer. Here, hard X-ray photoemission spectroscopy is used to reconstruct the electric potential barrier profile in as-grown Cr/BaTiO3(001)/Pt(001) heterostructures. Transport properties of Cr/BaTiO3/Pt junctions with a sub-μm Cr top electrode are interpreted in terms of tunneling electroresistance with resistance changes of a factor of ∼30 upon polarization reversal. By fitting the I-V characteristics with the model employing an experimentally determined electric potential barrier we derive the step height changes at the BaTiO3/Pt (Cr/BaTiO3) interface +0.42(−0.03) eV following downward to upward polarization reversal.
For the first time we have demonstrated an approach to control transmission of light through a single nanohole with the use of photon crystal microcavity. By use of the approach 28-fold enhanced transmission of light through a single nanohole in Au film has been experimentally demonstrated. The approach has the following advantages: (1) it enables to considerably increase transmission of light through a single nanohole, (2) the increase in transmission is unaffected by the hole diameter, (3) the transmission of nanohole is selective in frequency, the width of the resonance ~λ/90, (4) no auxiliary structures are necessary on the surface of the Au film (extra nanoholes, grooves, etc.).
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 µm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.
We propose and experimentally realize subwavelength light localization based on the optical nonlinearity of a single nonlinear element in nanoplasmonics-a split hole resonator (SHR). The SHR is composed of two basic elements of nanoplasmonics, a nanohole, and a nanorod. A peak field intensity occurs at the single spot of the SHR nanostructure. We demonstrate the use of the SHR as a highly efficient nonlinear optical element for (i) the construction of a polarization-ultrasensitive nanoelement and, as a practical application, (ii) the building up of an all-optical display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.