Cholestasis, or impaired bile flow, is an important but poorly understood manifestation of liver disease. Two clinically distinct forms of inherited cholestasis, benign recurrent intrahepatic cholestasis (BRIC) and progressive familial intrahepatic cholestasis type 1 (PFIC1), were previously mapped to 18q21. Haplotype analysis narrowed the candidate region for both diseases to the same interval of less than 1 cM, in which we identified a gene mutated in BRIC and PFIC1 patients. This gene (called FIC1) is the first identified human member of a recently described subfamily of P-type ATPases; ATP-dependent aminophospholipid transport is the previously described function of members of this subfamily. FIC1 is expressed in several epithelial tissues and, surprisingly, more strongly in small intestine than in liver. Its protein product is likely to play an essential role in enterohepatic circulation of bile acids; further characterization of FIC1 will facilitate understanding of normal bile formation and cholestasis.
BACKGROUND & AIMS:Patients with severe bile salt export pump (BSEP) deficiency present as infants with progressive cholestatic liver disease. We characterized mutations of ABCB11 (encoding BSEP) in such patients and correlated genotypes with residual protein detection and risk of malignancy. METHODS: Patients with intrahepatic cholestasis suggestive of BSEP deficiency were investigated by single-strand conformation polymorphism analysis and sequencing of ABCB11. Genotypes sorted by likely phenotypic severity were correlated with data on BSEP immunohistochemistry and clinical outcome. RESULTS: Eighty-two different mutations (52 novel) were identified in 109 families (9 nonsense mutations, 10 small insertions and deletions, 15 splice-site changes, 3 whole-gene deletions, 45 missense changes). In 7 families, only a single heterozygous mutation was identified despite complete sequence analysis. Thirty-two percent of mutations occurred in >1 family, with E297G and/or D482G present in 58% of European families (52/89). On immunohistochemical analysis (88 patients), 93% had abnormal or absent BSEP staining. Expression varied most for E297G and D482G, with some BSEP detected in 45% of patients (19/42) with these mutations. Hepatocellular carcinoma or cholangiocarcinoma developed in 15% of patients (19/128). Two protein-truncating mutations conferred particular risk; 38% (8/21) of such patients developed malignancy versus 10% (11/107) with potentially less severe genotypes (relative risk, 3.7 [confidence limits, 1.7-8.1; P = .003]). CONCLUSIONS: With this study, >100 ABCB11 mutations are now identified. Immunohistochemically detectable BSEP is typically absent, or much reduced, in severe disease. BSEP deficiency confers risk of hepatobiliary malignancy. Close surveillance of BSEP-deficient patients retaining their native liver, particularly those carrying 2 null mutations, is essential. Abbreviations:ABC, ATP-binding cassette; AFP, α-fetoprotein; BSEP, bile salt export pump; CpG, cytosine-guanine; CC, cholangiocarcinoma; FIC1, familial intrahepatic cholestasis 1; γ-GT, γ-glutamyl transferase; HCC, hepatocellular carcinoma; IC, intracellular loop; MDR1, multidrug resistance protein 1; MDR3, multidrug resistance protein 3; MRP2, multidrug resistance-associated protein 2; NBF, nucleotide-binding fold; OLT, orthotopic liver transplantation; PEBD, partial external biliary diversion; PFIC, progressive familial intrahepatic cholestasis; PCR, polymerase chain reaction; RE, restriction endonuclease; SSCP, single-strand conformation polymorphism; TM, transmembrane domain; UDCA, ursodeoxycholic acid Acknowledgements We thank the families and the Children's Liver Disease Foundation for support and encouragement, and those who referred families for analysis, including Drs U Baumann, W Berquist, M de Vree, K Emerick, G Ferry, M Finegold, W Hardikar, S Horslen, R Houwen, R Jaffe, L Klomp, F Lacaille, K Mann, P McKiernan, H Sharp, R Sokol, E Sturm, L Szönyi, J Taminou, and J Watkins. We also thank Dr R Garcia-Kennedy for access...
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotorsyndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.