M. Feroci et al.Abstract High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m 2 -class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of ∼12 m 2 (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
This paper is a multi-case study exploratory investigation into the earliest stages of projects and their management. We refer to this throughout the paper as the 'front-end'. We provide a definition of this phase of the project life cycle and conduct a literature review of the various topics that would suggest themselves to be apposite to the front-end. This includes governance and strategy; requirements and technology; estimating; risk and value; people and learning and development. Following this review of literature, we set out the approach taken in the empirical study. The context for the study was the UK, although many of the organizations investigated had a global presence and some of their projects were multinational in nature. We detail the research methods, the multi-case study route taken and the nature of the in-depth interviews with senior project management representatives from nine extremely credible organizations experienced in managing projects. Our findings are presented so as to identify the key set of findings determined after multiple passes of the interview details. These findings reflect both what comprises the front-end of projects and what management does in the front-end. Some of this would be expected of project management, but we found aspects of the front-end management that are not within the normal remit of what is considered to be traditional project management. These findings both reinforce the literature and offer new insights, for example, showing the strong influence of the commercial and economic non-project players in leading or influencing the front-end of projects. A considered set of conclusions are presented together with recommendations for further research.
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.