Silicon is more than the dominant material in the conventional microelectronics industry: it also has potential as a host material for emerging quantum information technologies. Standard fabrication techniques already allow the isolation of single electron spins in silicon transistor-like devices. Although this is also possible in other materials, silicon-based systems have the advantage of interacting more weakly with nuclear spins. Reducing such interactions is important for the control of spin quantum bits because nuclear fluctuations limit quantum phase coherence, as seen in recent experiments in GaAs-based quantum dots. Advances in reducing nuclear decoherence effects by means of complex control still result in coherence times much shorter than those seen in experiments on large ensembles of impurity-bound electrons in bulk silicon crystals. Here we report coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure and show that this system has a nuclei-induced dephasing time of 360 nanoseconds, which is an increase by nearly two orders of magnitude over similar measurements in GaAs-based quantum dots. The degree of phase coherence observed, combined with fast, gated electrical initialization, read-out and control, should motivate future development of silicon-based quantum information processors.
How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below T = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations from density functional theory. Our study thus points to a delicate balance that can be realized between competing interacting states and phases in monolayer transition-metal dichalcogenides.
We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations. DOI: 10.1103/PhysRevLett.116.110402 Gated semiconductor quantum dots are a leading candidate for quantum information processing due to their high speed, density, and compatibility with mature fabrication technologies [1,2]. Quantum dots are formed by spatially confining individual electrons using a combination of material interfaces and nanoscale metallic gates. Although several quantized degrees of freedom are available [3][4][5], the electron spin is often employed as a qubit due to its long coherence time [6,7]. Spin-spin coupling may be controlled via the kinetic exchange interaction, which has the benefit of short range and electrical controllability. Numerous qubit proposals use exchange, including as a two-qubit gate between ESR-addressed spins [8], a single axis of control in a two dot system also employing gradient magnetic fields [9] or spin-orbit couplings [10], or as a means of full qubit control on a restricted subspace of at least three coupled spins [11][12][13]. However, since exchange relies on electron motion, it is susceptible to electric field fluctuations, or charge noise. Limiting the consequence of this noise is critical to attaining performance of exchange-based qubits adequate for quantum information processing.Charge noise in semiconductor quantum dots may originate from a variety of sources including electric defects at interfaces and in dielectrics [14]. These defects typically result in electric fields that exhibit an approximate 1=f noise spectral density. Conventional routes for reducing charge noise include improving materials and interfaces [15] and dynamical decoupling [16][17][18][19]. In this Letter, rather than addressing the microscopic origins or detailed spectrum of charge noise, we introduce a "symmetric" mode of operation where the exchange interaction is less susceptible to that noise. This is done by biasing the device to a regime where the strength of the exchange interaction is first-order insensitive to dot chemical potential fluctuations but is still controllable by modulating the interdot tunnel barrier. This dramatically reduces the effects of charge noise.The principle of symmetric operation can be understood by treating charge noise as equivalent to voltage fluctuations on confinement gates. This approximation is valid when materi...
Three coupled quantum dots in isotopically purified silicon enable all-electrical qubit control with long coherence time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.