We report on the measurement of the γp → J/ψp cross section from Eγ = 11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67 ± 0.39 GeV −2 at 10.7 GeV average energy. The LHCb pentaquark candidates P + c can be produced in the s-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions B(P + c → J/ψp).
High precision measurements of the differential cross sections for π0 photoproduction at forward angles for two nuclei, 12C and 208Pb, have been performed for incident photon energies of 4.9-5.5 GeV to extract the π0→γγ decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The π0→γγ decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Γ(π0→γγ)=7.82±0.14(stat)±0.17(syst) eV. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current Particle Data Group average of this fundamental quantity, and it is consistent with current theoretical predictions.
We report measurements of the photon beam asymmetry Σ for the reactions γp → pπ 0 and γp → pη from the GLUEX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π 0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
The exclusive reactions p ! K 0 K n and p ! K 0 K 0 p have been studied in the photon energy range 1.6-3.8 GeV, searching for evidence of the exotic baryon 1540 in the decays ! nK and ! pK 0. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70 pb ÿ1. The reactions have been isolated by detecting the K and proton directly, the neutral kaon via its decay to K S ! ÿ and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as , ÿ and 1116 were used as a check of the mass determination accuracy and experimental resolution. Approximately 100 000 1520's and 150 000 's were observed in the K 0 K n and K 0 K 0 p final state, respectively. No evidence for the pentaquark was found in the nK or pK S invariant mass spectra. Upper limits were set on the production cross section of the reaction p ! K 0 as functions of center-of-mass angle, nK and pK S masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the width, ÿ , ranging between 0.01 and 7 MeV.
A search for the Theta+ in the reaction gammad --> pK-K+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow Theta+ resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on Theta+ production in the mass range of 1.52-1.56 GeV/c2 for the gammad --> pK-Theta+ reaction is 0.3 nb (95% C.L.). This upper limit depends on assumptions made for the mass and angular distribution of Theta+ production. Using Lambda(1520) production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary gamman --> K-Theta+ reaction is estimated to be a factor of 10 higher, i.e., approximately 3 nb (95% C.L.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.