The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.
We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.
To provide a very powerful vanadium (V) beam with an intensity of at least 6 particle μA for synthesizing a new superheavy element (SHE) with atomic number Z = 119, we have developed a high-temperature oven (HTO) system to evaporate the metallic V powder inside the new superconducting (SC) electron cyclotron ion source. We successfully extracted a V13+ beam with a maximum beam intensity of 600 eμA with 2.8-kW microwave power and 900-W heating power of the HTO. Furthermore, from a systematic study of the dependence of the beam intensity on the microwave power and the HTO power, we successfully produced a V13+ beam of 300 eμA at a consumption rate of 3 mg/h, allowing a one-month duration continuous beam to carry out the SHE synthesis. In addition, to avoid serious damage to newly introduced SC acceleration cavities by beam losses, the beam should be transported with a well-controlled emittance. To efficiently limit the beam emittance, we employed a slit triplet consisting of three pairs of slits installed around the focus point of the low-energy beam transport. The first result of the emittance reduction was observed by a pepper-pot type emittance meter as a function of the acceptance of the slit triplet.
A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U(35+) for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.