This paper introduces Rapid Appraisal of Agricultural Innovation Systems (RAAIS). RAAIS is a diagnostic tool that can guide the analysis of complex agricultural problems and innovation capacity of the agricultural system in which the complex agricultural problem is embedded. RAAIS focuses on the integrated analysis of different dimensions of problems (e.g. biophysical, technological, socio-cultural, economic, institutional and political), interactions across different levels (e.g. national, regional, local), and the constraints and interests of different stakeholder groups (farmers, government, researchers, etc.). Innovation capacity in the agricultural system is studied by analysing (1) constraints within the institutional, sectoral and technological subsystems of the agricultural system, and (2) the existence and performance of the agricultural innovation support system. RAAIS combines multiple qualitative and quantitative methods, and insider (stakeholders) and outsider (researchers) analyses which allow for critical triangulation and validation of the gathered data. Such an analysis can provide specific entry points for innovations to address the complex agricultural problem under study, and generic entry points for innovation related to strengthening the innovation capacity of agricultural system and the functioning of the agricultural innovation support system. The application of RAAIS to analyse parasitic weed problems in the rice sector, conducted in Tanzania and Benin, demonstrates the potential of the diagnostic tool and provides recommendations for its further development and use.
TWO SORGHUM CULTIVARS: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88-97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.