We provide a first look at the results of the Herschel Gould Belt survey toward the IC 5146 molecular cloud and present a preliminary analysis of the filamentary structure in this region. The column density map, derived from our 70-500 μm Herschel data, reveals a complex network of filaments and confirms that these filaments are the main birth sites of prestellar cores. We analyze the column density profiles of 27 filaments and show that the underlying radial density profiles fall off as r −1.5 to r −2.5 at large radii. Our main result is that the filaments seem to be characterized by a narrow distribution of widths with a median value of 0.10 ± 0.03 pc, which is in stark contrast to a much broader distribution of central Jeans lengths. This characteristic width of ∼0.1 pc corresponds to within a factor of ∼2 to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, which supports the argument that the filaments may form as a result of the dissipation of large-scale turbulence.
Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explores the southern sky at submillimeter wavelengths, in both continuum and spectral line emission. Studying continuum emission from interstellar dust is essential to locating the highest density regions in the interstellar medium, and deriving their masses, column densities, density structures, and large-scale morphologies. In particular, the early stages of (massive) star formation remain poorly understood, mainly because only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large-scale, systematic database of massive pre-and proto-stellar clumps in the Galaxy, to understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characterized sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass, star-forming clumps. This systematic survey at submillimeter wavelengths also represents a preparatory work for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 μm, with a beam size of 19. 2. Taking advantage of its large field of view (11. 4) and excellent sensitivity, we started an unbiased survey of the entire Galactic Plane accessible to APEX, with a typical noise level of 50−70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we covered ∼95 deg 2 of the Galactic Plane. These data reveal ∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the compact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or protoclusters. Other compact sources harbor hot cores, compact H ii regions, or young embedded clusters, thus tracing more evolved stages after massive stars have formed. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M . In this first introductory paper, we show preliminary results from these ongoing observations, and discuss the mid-and long-term perspectives of the survey.
The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 μm (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4 × 8 , observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6 . The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2. Key words. instrumentation: photometers -instrumentation: spectrographs -space vehicles: instruments -submillimeter: generalHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.