International audienceThe microwave emission linewidth of spin transfer torque nano-oscillators is closely related to their phase and amplitude noise that can be extracted from the magnetoresistive voltage signal V(t) using single shot time domain techniques. Here we report on phase and amplitude noise studies for MgO based magnetic tunnel junction oscillators. The analysis of the power spectral densities allows one to separate the linear and nonlinear contributions to the phase noise, the nonlinear contribution being due to the coupling between phase and amplitude. The coupling strength as well as the amplitude relaxation rate can be directly extracted
We have determined the blocking temperature distribution Tb(T) in spin-valve sheet films with FeMn, IrMn, PtMn, NiMn and CrPdMn antiferromagnetic layers (AFM). We find a clear dependence of Tb(T) on the field applied during the measurement, which we link to the reversal state of the pinned layer through the torque applied on the AFM. Using fields large enough to fully reverse the pinned layer, NiMn and PtMn show little or no components of the blocking temperature below 150 °C, whereas both IrMn and CrPdMn (the latter in a “synthetic” AFM design) exhibit important low-temperature trailing edges of the distribution. Accelerated annealing experiments in a low reversed field equivalent to the self-demagnetizing field in a micron-size head allows us to access the time to failure and the failure activation energy from which the expected lifetime can be assessed. We find a general correlation between the expected lifetime and the fraction of loose (e.g., unblocked) AFM spins at any given temperature. Accordingly, only NiMn and PtMn are found to exhibit a sufficient long-term stability for disk-drive operations.
International audienceSpin torque nano-oscillators are nanoscopic microwave frequency generators which excel due totheir large frequency tuning range and agility for amplitude and frequency modulation. Due to theircompactness, they are regarded as suitable candidates for applications in wireless communications,where cost-effective and complementary metal-oxide semiconductor-compatible standalone devicesare required. In this work, we study the ability of a magnetic-tunnel-junction based spin torquenano-oscillator to respond to a binary input sequence encoded in a square-shaped current pulse forits application as a frequency-shift-keying (FSK) based emitter. We demonstrate that below thelimit imposed by the spin torque nano-oscillator intrinsic relaxation frequency, an agile variationbetween discrete oscillator states is possible. For this kind of devices, we demonstrate FSK up to datarates of 400 Mbps, which is well suited for the application of such oscillators in wireless network
Injection locking of a spin transfer nano-oscillator, based on an in-plane magnetized magnetic tunnel junction and generating the frequency f0, to an external signal of varying frequency fe is studied experimentally and with macrospin simulations. It is shown, that if the driving signal has the form of a microwave current, the locking effect is well-pronounced near fe≅2f0, but is almost completely absent near fe≅f0, confirming predictions of analytical theory. It is also shown that noise plays an important role in the locking process, causing the linewidth of the locked oscillation to substantially exceed that of the driving signal.
For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γp that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature of the STNO the amplitude relaxation rate Γp determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.