Heart failure is a significant clinical issue. It is the cause of enormous healthcare costs worldwide and results in significant morbidity and mortality. Cardiac regenerative therapy has progressed considerably from clinical and preclinical studies delivering simple suspensions of cells, macromolecule, and small molecules to more advanced delivery methods utilizing biomaterial scaffolds as depots for localized targeted delivery to the damaged and ischemic myocardium. Here, regenerative strategies for cardiac tissue engineering with a focus on advanced delivery strategies and the use of multimodal therapeutic strategies are reviewed.
The complex motion of the beating heart is accomplished by the spatial arrangement of contracting cardiomyocytes with varying orientation across the transmural layers, which is difficult to imitate in organic or synthetic models. High-fidelity testing of intracardiac devices requires anthropomorphic, dynamic cardiac models that represent this complex motion while maintaining the intricate anatomical structures inside the heart. In this work, we introduce a biorobotic hybrid heart that preserves organic intracardiac structures and mimics cardiac motion by replicating the cardiac myofiber architecture of the left ventricle. The heart model is composed of organic endocardial tissue from a preserved explanted heart with intact intracardiac structures and an active synthetic myocardium that drives the motion of the heart. Inspired by the helical ventricular myocardial band theory, we used diffusion tensor magnetic resonance imaging and tractography of an unraveled organic myocardial band to guide the design of individual soft robotic actuators in a synthetic myocardial band. The active soft tissue mimic was adhered to the organic endocardial tissue in a helical fashion using a custom-designed adhesive to form a flexible, conformable, and watertight organosynthetic interface. The resulting biorobotic hybrid heart simulates the contractile motion of the native heart, compared with in vivo and in silico heart models. In summary, we demonstrate a unique approach fabricating a biomimetic heart model with faithful representation of cardiac motion and endocardial tissue anatomy. These innovations represent important advances toward the unmet need for a high-fidelity in vitro cardiac simulator for preclinical testing of intracardiac devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.