Background
Maximal safe resection remains a key principle in infiltrating glioma management. Stimulation mapping is a key adjunct for minimizing functional morbidity while “fence-post” procedures use catheters or dye to mark the tumor border at the start of the procedure prior to brain shift.
Objective
To report a novel technique using stereotactically placed electrodes to guide tumor resection near critical descending subcortical fibers.
Methods
Navigated electrodes were placed prior to tumor resection along the deep margin bordering presumed eloquent tracts. Stimulation was administered through these depth electrodes for subcortical motor and language mapping.
Results
Twelve patients were included in this preliminary technical report. Seven patients (7/12, 58%) were in asleep cases, while the other 5 cases (5/12, 42%) were performed awake. Mapping of motor fibers was performed in 8 cases, and language mapping was done in 1 case. In 3 cases, both motor and language mapping were performed using the same depth electrode spanning corticospinal tract and the arcuate fasciculus.
Conclusion
Stereotactic depth electrode placement coupled with stimulation mapping of white matter tracts can be used concomitantly to demarcate the border between deep tumor margins and eloquent brain, thus helping to maximize extent of resection while minimizing functional morbidity.
Intraoperative neuromonitoring (IONM) is a widely used practice in spine surgery for early detection and minimization of neurological injury. IONM is most commonly conducted by indirectly recording motor and somatosensory evoked potentials from either muscles or the scalp, which requires large-amplitude electrical stimulation and provides limited spatiotemporal information. IONM may inform of inadvertent events during neurosurgery after they occur, but it does not guide safe surgical procedures when the anatomy of the diseased spinal cord is distorted. To overcome these limitations and to increase our understanding of human spinal cord neurophysiology, we applied a microelectrode array with hundreds of channels to the exposed spinal cord during surgery and resolved spatiotemporal dynamics with high definition. We used this method to construct two-dimensional maps of responsive channels and define with submillimeter precision the electrophysiological midline of the spinal cord. The high sensitivity of our microelectrode array allowed us to record both epidural and subdural responses at stimulation currents that are well below those used clinically and to resolve postoperative evoked potentials when IONM could not. Together, these advances highlight the potential of our microelectrode arrays to capture previously unexplored spinal cord neural activity and its spatiotemporal dynamics at high resolution, offering better electrophysiological markers that can transform IONM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.