The de Haas-van Alphen effect was observed in the underdoped cuprate YBa2Cu3O6.5 via a torque technique in pulsed magnetic fields up to 59 T. Above a field of approximately 30 T the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, closed, and coherent, Fermi surface in the pseudogap phase of cuprates.
We present a study of the upper critical field of the newly discovered heavy fermion superconductor UTe 2 by magnetoresistivity measurements in pulsed magnetic fields up to 60 T and static magnetic fields up to 35 T. We show that superconductivity survives up to the metamagnetic transition at H m ≈ 35 T at low temperature. Above H m superconductivity is suppressed. At higher temperature superconductivity is enhanced under magnetic field leading to reentrance of superconductivity or an almost temperature independent increase of H c2 . By studying the angular dependence of the upper critical field close to the b axis (hard magnetization axis) we show that the maximum of the reentrant superconductivity temperature is depinned from the metamagnetic field. A key ingredient for the field-reinforcement of superconductivity on approaching H m appears to be an immediate interplay with magnetic fluctuations and a possible Fermi-surface reconstruction. 1 arXiv:1905.05181v1 [cond-mat.str-el]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.