Petrophysical proprieties such as porosity, density, permeability and saturation have a marked impact on acoustic proprieties of rocks. Hence, there has been recently a strong incentive to use new geophysical techniques to invert such properties from seismic or sonic measurements for rocks characterization. The P-wave velocity, which is non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the geotechnical properties of rock materials. The P-wave velocity of a rock is closely related to the intact rock properties, and we have been measuring the velocity in rock masses and describe the rock structure and texture. The present work deals with the use of a simple and non-destructive technique, ultrasonic velocity, to predict the porosity and density of calcarenite rocks that are characteristic in historical monument. The ultrasonic test is based on measuring the propagation time of a P-wave in the longitudinal direction. Good correlations between P-wave velocity, porosity and density were found, which indicated them as an appropriate technique for estimating the porosity and density.
Ultrasonic velocity measurement, a non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the physical properties of rock materials. This paper presents an experimental study of the measurement of P-wave velocity, thermal conductivity and porosity of several types of sedimentary, metamorphic, and magmatic rocks. The aim of this study is to predict the rocks properties including their thermal conductivity and porosity using P-wave velocity. For this purpose, the physical properties are determined in the laboratory to obtain correlations between P-wave velocity and physical properties. Consequently, good linear relationships are found between all the determined physical properties and the P-wave velocity measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.