Background-The present study examined whether transplantation of adherent bone marrow-derived stem cells, termed pMultistem, induces neovascularization and cardiomyocyte regeneration that stabilizes bioenergetic and contractile function in the infarct zone and border zone (BZ) after coronary artery occlusion. Methods and Results-Permanent left anterior descending artery occlusion in swine caused left ventricular remodeling with a decrease of ejection fraction from 55Ϯ5.6% to 30Ϯ5.4% (magnetic resonance imaging). Four weeks after left anterior descending artery occlusion, BZ myocardium demonstrated profound bioenergetic abnormalities, with a marked decrease in subendocardial phosphocreatine/ATP ( 31 P magnetic resonance spectroscopy; 1.06Ϯ0.30 in infarcted hearts [nϭ9] versus 1.90Ϯ0.15 in normal hearts [nϭ8; PϽ0.01]). This abnormality was significantly improved by transplantation of allogeneic pMultistem cells (subendocardial phosphocreatine/ATP to 1.34Ϯ0.29; nϭ7; PϽ0.05). The BZ protein expression of creatine kinase-mt and creatine kinase-m isoforms was significantly reduced in infarcted hearts but recovered significantly in response to cell transplantation. MRI demonstrated that the infarct zone systolic thickening fraction improved significantly from systolic "bulging" in untreated animals with myocardial infarction to active thickening (19.7Ϯ9.8%, PϽ0.01), whereas the left ventricular ejection fraction improved to 42.0Ϯ6.5% (PϽ0.05 versus myocardial infarction). Only 0.35Ϯ0.05% donor cells could be detected 4 weeks after left anterior descending artery ligation, independent of cell transplantation with or without immunosuppression with cyclosporine A (with cyclosporine A, nϭ6; no cyclosporine A, nϭ7). The fraction of grafted cells that acquired an endothelial or cardiomyocyte phenotype was 3% and Ϸ2%, respectively. Patchy spared myocytes in the infarct zone were found only in pMultistem transplanted hearts. Vascular density was significantly higher in both BZ and infarct zone of cell-treated hearts than in untreated myocardial infarction hearts (PϽ0.05). Conclusions-Thus, allogeneic pMultistem improved BZ energetics, regional contractile performance, and global left ventricular ejection fraction. These improvements may have resulted from paracrine effects that include increased vascular density in the BZ and spared myocytes in the infarct zone.
Background-Postinfarction left ventricular remodeling (LVR) is associated with reductions in myocardial high-energy phosphate (HEP) levels, which are more severe in animals that develop overt congestive heart failure (CHF). During high work states, further HEP loss occurs, which suggests demand-induced ischemia. This study tested the hypothesis that inadequate myocyte oxygen availability is the basis for these HEP abnormalities. Methods and Results-Myocardial infarction was produced by left circumflex coronary artery ligation in swine. Studies were performed in 20 normal animals, 14 animals with compensated LVR, and 9 animals with CHF. Phosphocreatine (PCr)/ATP was determined with 31 P NMR and deoxymyoglobin (Mb-␦) with 1 H NMR in myocardium remote from the infarct. Basal PCr/ATP tended to be decreased in postinfarct hearts, and this was significant in animals with CHF. Infusion of dobutamine (20 g ⅐ kg Ϫ1 ⅐ min Ϫ1 IV) caused doubling of the rate-pressure product in both normal and LVR hearts and resulted in comparable significant decreases of PCr/ATP in both groups. This decrease in PCr/ATP was not associated with detectable Mb-␦. In CHF hearts, rate-pressure product increased only 40% in response to dobutamine; this attenuated response also was not associated with detectable Mb-␦. Conclusions-Thus, the decrease of PCr/ATP during dobutamine infusion is not the result of insufficient myocardial oxygen availability. Furthermore, in CHF hearts, the low basal PCr/ATP and the attenuated response to dobutamine occurred in the absence of myocardial hypoxia, indicating that the HEP and contractile abnormalities were not the result of insufficient oxygen availability. (Circulation. 1999;99:942-948.)
Current therapies for heart failure due to transmural left ventricular (LV) infarction are limited. We have developed a novel patch method for delivering autologous bone marrow stem cells to sites of myocardial infarction for the purpose of improving LV function and preventing LV aneurysm formation. The patch consisted of a fibrin matrix seeded with autologous porcine mesenchymal stem cells labeled with lacZ. We applied this patch to a swine model of postinfarction LV remodeling. Myocardial infarction was produced by using a 60-min occlusion of the left anterior descending coronary artery distal to the first diagonal branch followed by reperfusion. Results were compared between eight pigs with stem cell patch transplantation, six pigs with the patch but no stem cells (P), and six pigs with left anterior descending coronary artery ligation alone (L). Magnetic resonance imaging data collected 19 +/- 1 days after the myocardial infarction indicated a significant increase of LV systolic wall thickening fraction in the infarct zone of transplanted hearts compared with P or L hearts. Blue X-gal staining was observed in the infarcted area of transplanted hearts. PCR amplification of specimens from the X-gal-positive area revealed the Ad5 RSV-lacZ vector fragment DNA sequence. Light microscopy demonstrated that transplanted cells had differentiated into cells with myocyte-like characteristics and a robust increase of neovascularization as evidenced by von Willebrand factor-positive angioblasts and capillaries in transplanted hearts. Thus this patch-based autologous stem cell procedure may serve as a therapeutic modality for myocardial repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.