The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.
The Coronavirus Disease 2019 (COVID-19), caused by the novel SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Immunological surrogate markers, in particular antigen-specific responses, are of unquestionable value for clinical management of patients with COVID-19. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized patients with RT-PCR confirmed COVID-19 infection. Our data show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Notably, anti-S and -N IgG, peaked 20-40 day after disease onset, and were still detectable for at least up to 70 days, with nAbs observed during the same time period. Moreover, nAbs titers were strongly correlated with IgG antibodies. Significantly higher levels of nAbs as well as anti-S1 and N IgG and IgM antibodies were found in patients with more severe clinical presentations, patients requiring admission to intensive care units (ICU) or those with fatal outcomes. Interestingly, lower levels of antibodies, particularly anti-N IgG and IgM in the first 15 days after symptoms onset, were found in survivors and those with mild clinical presentations. Collectively, these findings provide new insights into the characteristics and kinetics of antibody responses in COVID-19 patients with different disease severity.
Considering the global trend to confine the COVID‐19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS‐CoV‐2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID‐19 patients. This study was a single‐center, randomized, double‐blind, six‐parallel‐group, placebo‐controlled clinical trial that investigated the effect of four mouth rinses (1% povidone‐iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS‐CoV‐2 viral load relative to the distilled water and no‐rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT‐qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone‐iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no‐rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no‐rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk‐mitigation step before dental procedures, along with strict adherence to other infection control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.