Pedestrians are vulnerable road users, and they are always at risk when making their daily trips. Hence, roadway design and tra c control devices need to consider pedestrians' safety. Pedestrian walking speed is fundamental to any roadway and tra c control design. Unfortunately, no speci c guidelines exist for pedestrian crossing speed in Malaysia. e ultimate goals of this research are to establish the local pedestrian crossing speed and to identify the contributing factors. A total of 1579 samples on pedestrian crossing speed were collected at signalised and non-signalised crosswalks. e Bivariate analysis (chi-square test) was carried out to study statistically the association of the contributing factors. e Bivariate analysis shows that crosswalk type, age and gender signi cantly contribute to pedestrian speed in Malaysia. However, lighting (daytime and night-time) and race are not contributing to the pedestrians' speed. Besides, pedestrians at non-signalised crosswalk have signi cantly faster crossing speed than at signalised crosswalk. Chi-square test also showed that children pedestrians are the fastest group, and elderly pedestrians are the slowest group in terms of pedestrian crossing speed. Moreover, male pedestrians have signi cantly faster crossing speed than female pedestrians do.
Water soluble lignin graft copolymer (LGC) was synthesized using oil palm empty fruit bunch (OPEFB) fibre as a renewable biomass source. Initially, Kraft lignin (KL) was extracted by exploiting the OPEFB fibre Kraft pulping residue. KL was grafted with acrylic acid (AA) by using p-toluenesulfonic acid (PTS) as a catalyst in the condensation process via the bulk technique. The resulting copolymer was characterized by a Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetry-Fourier transform infrared (TG-FTIR) and carbon-hydrogen-nitrogen analyzer (CHN). The FTIR spectrum of the product showed absorption due to the presence of ester bonds as a proof of grafting. The DSC and TG-FTIR results showed significant improvements in the KL thermal properties at least 27.261% as well as a thermal degradation resistance. The elements percentages of KL compositions were changed as shown by the CHN data. SEM micrographs illustrated the grafting reaction homogenizing the KL morphological structure
One of the major problems with landfills is that they contain a large amount of solid wastes. Waste plastics and glasses contribute greatly to this problem, and these materials need to be managed or recycled to extend the life of landfill sites. Hence, this study was conducted to investigate the feasibility of using these waste materials in asphalt mixtures for pavement applications. Various types of recycled waste plastics and glasses were selected for this study and the mix containing these materials was designed by the Marshall method. Three types of glass were used: bottle glass, liquid-crystal display (LCD) glass, and sheet glass. In terms of the total weight of the asphalt mixtures, approximately 5% constituted of recycled materials used as an aggregate replacement. In this study, asphalt mixtures were aged in the laboratory to simulate the site conditions of short-term and long-term ageing. After the ageing process, samples were tested for asphalt mixture performance characteristics in terms of the following parameters: Marshall Stability and Flow, Marshall Quotient and resilient modulus. It was found that the replacement combining 1% recycled plastic and 4% recycled glass shows almost similar and satisfactory results compared to the control sample for all tests. Therefore, recycled plastic and recycled glass, when optimally blended, can be considered feasible to be used as an aggregate replacement in asphalt mixtures for flexible road pavements.
Aging process of bitumen is one of the main obstacles, which limit the implementation of porous pavement. An aging process would cause a shorter service life of porous asphalt compared to the conventional hot mix asphalt mixture. The tendency rate of aging processes in porous asphalt is high due to the exposure of bitumen and aggregates binding in an open-graded structure that maximizes oxidation process to occur thus producing aged binder. In this respect to restore the original characteristics of pavement from aged bitumen, rejuvenation of bitumen binder offers an effective option. From the previous research, the performance of waste cooking oil (WCO) is investigated and indicated as one of rejuvenator agents for bitumen regeneration. Thus, this paper reviewed the novelty of the WCO, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen in the asphalt mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.