The safe and efficient storage of hydrogen is widely recognized as one of the key technological challenges in the transition towards a hydrogen-based energy economy. Whereas hydrogen for transportation applications is currently stored using cryogenics or high pressure, there is substantial research and development activity in the use of novel condensed-phase hydride materials. However, the multiple-target criteria accepted as necessary for the successful implementation of such stores have not yet been met by any single material. Ammonia borane, NH3BH3, is one of a number of condensed-phase compounds that have received significant attention because of its reported release of approximately 12 wt% hydrogen at moderate temperatures (approximately 150 degrees C). However, the hydrogen purity suffers from the release of trace quantities of borazine. Here, we report that the related alkali-metal amidoboranes, LiNH2BH3 and NaNH2BH3, release approximately 10.9 wt% and approximately 7.5 wt% hydrogen, respectively, at significantly lower temperatures (approximately 90 degrees C) with no borazine emission. The low-temperature release of a large amount of hydrogen is significant and provides the potential to fulfil many of the principal criteria required for an on-board hydrogen store.
Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. In this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal-organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H 2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H 2 physisorption is therefore presented. Finally, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed. IntroductionStorage of hydrogen with sufficient gravimetric and volumetric capacity for vehicular use remains a significant obstacle to the widespread adoption of hydrogen fuel cell electric vehicles (FCEVs). Several FCEV models are now commercially available in limited locations around the world, and in these vehicles hydrogen is stored as a gas at room temperature with a fill Table 1 along with the current performance of 700 bar systems. These values pertain to the entire storage system, which includes the mass and volume of hydrogen in addition to the tank and associated balance-ofplant (BOP) components. Notably, it is physically impossible to meet the 2025 and ultimate volumetric capacity target with pressurized gas, as the density of H 2 gas at 700 bar and room temperature is just 40 g L À1 without accounting for the BOP.The search for solid-state H 2 storage materials that can supplant compressed gas systems has been ongoing for at least two decades. The development of a viable storage material Broader contextThe widespread use of hydrogen as a clean, sustainable energy carrier has the potential to provide several significant benefits, including a reduction in oil dependency and emissions, improved energy security and grid resiliency, and substantial economic opportunities across many sectors. Hydrogen-fueled vehicles are already appearing internationally, and one of the critical enabling technologies for increasing their availability is on-board hydrogen storage. Stakeholders in developing a hydrogen in...
Hydrogenolysis of polypropylene (PP) and polyethylene (PE) provides a pathway to convert these plastics into smaller hydrocarbons at relatively low temperature. Among carbon (C)-supported transition metals, ruthenium (Ru) exhibited the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.