The ethical, legal, and social implications (ELSI) of emerging neurobiobanks and data resources are unclear in an African scientific landscape with unique cultural, linguistic, and belief systems. The overarching goal of the African Neurobiobank for Precision Stroke Medicine–—ELSI Project is to identify, examine, and develop novel approaches to address ELSI issues of biobanking and stroke genomic research in sub-Saharan Africa (SSA). To accomplish the goal we will (1) explore knowledge, attitude, perceptions, barriers, and facilitators influencing ELSI issues related to biobanking and stroke genomic research; (2) use information obtained to craft a community intervention program focused on ELSI issues; and (3) build capacity and careers related to genomics and biobanking for effective client/community engagement while enhancing regulatory, governance, and implementation competences in biobanking science in SSA. A community-based participatory research and mixed-methodological approach, focused on various levels of the social ecological model, will be used to identify and examine relevant ELSI issues. Contextual intervention tools, platforms, and practices will be developed to enhance community understanding and participation in stroke biobanking and genomics research activities while facilitating enduring trust, and equitable and fair utilization of biobanking resources for genetic and trans-omics research. A concurrent capacity building program related to genetic counseling and biobanking will be implemented for early career researchers. The huge potential for neurobiobanking and genomics research in Africa to advance precision medicine applicable to stroke and other neurological disorders requires addressing ELSI challenges while building sustainable research, career, and regulatory capacities in trans-omics and biobanking science.
Background and Objectives:Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).Methods:We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.Results:There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations.Discussion:There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.Trial Registration Information:This study is registered underNCT04934020.
Background Clinical disease registries are useful for quality improvement in care, benchmarking standards, and facilitating research. Collaborative networks established thence can enhance national and international studies by generating more robust samples and credible data and promote knowledge sharing and capacity building. This report describes the methodology, baseline data, and prospects of the Nigeria Parkinson Disease Registry. Methods This national registry was established in November 2016. Ethics approval was obtained for all sites. Basic anonymized data for consecutive cases fulfilling the United Kingdom Parkinson's Disease Brain Bank criteria (except the exclusion criterion of affected family members) are registered by participating neurologists via a secure registry website (http://www.parkinsonnigeria.com) using a minimal common data capture format. Results The registry had captured 578 participants from 5 of 6 geopolitical zones in Nigeria by July 2019 (72.5% men). Mean age at onset was 60.3 ± 10.7 years; median disease duration (interquartile range) was 36 months (18–60.5 months). Young‐onset disease (<50 years) represented 15.2%. A family history was documented in 4.5% and 7.8% with age at onset <50 and ≥ 50, respectively. The most frequent initial symptom was tremor (45.3%). At inclusion, 93.4% were on treatment (54.5% on levodopa monotherapy). Per‐capita direct cost for the registry was $3.37. Conclusions This is the first published national Parkinson's disease registry in sub‐Saharan Africa. The registry will serve as a platform for development of multipronged evidence‐based policies and initiatives to improve quality of care of Parkinson's disease and research engagement in Nigeria. © 2020 International Parkinson and Movement Disorder Society
Summary Background Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods Here we perform a comprehensive genome-wide assessment of Parkinsons disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gauchers disease in Africa is low. Interpretation The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Research in Context Evidence Before this Study Our current understanding of Parkinsons disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts. Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinsons Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.