BackgroundMutations and epigenetic aberrant signaling of growth factors pathways contribute to carcinogenesis. Recent studies reveal that non-coding RNAs are controllers of gene expression. H19 is an imprinted gene that demonstrates maternal monoallelic expression without a protein product; although its expression is shut off in most tissues postnatally, it is re-activated during adult tissue regeneration and tumorigenesis. Moreover, H19 is highly expressed in liver metastasis derived from a range of carcinomas. The objective of this study is to explore the role of H19 in carcinogenesis, and to determine its identification as an anti-tumor target.Methodology/ Principle FindingsBy controlling oxygen pressure during tumor cell growth and H19 expression levels, we investigated the role of H19 expression in vitro and in vivo in hepatocellular (HCC) and bladder carcinoma. Hypoxia upregulates the level of H19 RNA. Ablations of tumorigenicity of HCC and bladder carcinomas in vivo are seen by H19 knockdown which also significantly abrogates anchorage-independent growth after hypoxia recovery, while ectopic H19 expression enhances tumorigenic potential of carcinoma cells in vivo. Knocking-down H19 message in hypoxic stress severely diminishes p57kip2 induction. We identified a number of potential downstream targets of H19 RNA, including angiogenin and FGF18.ConclusionsH19 RNA harbors pro-tumorigenic properties, thus the H19 gene behaves as an oncogene and may serve as a potential new target for anti-tumor therapy.
The imprinted oncofetal long non-coding RNA (lncRNA) H19 is expressed in the embryo, down-regulated at birth and then reappears in tumors. Its role in tumor initiation and progression has long been a subject of controversy, although accumulating data suggest that H19 is one of the major genes in cancer. It is actively involved in all stages of tumorigenesis and is expressed in almost every human cancer. In this review we delineate the various functions of H19 during the different stages in the complex process of tumor progression. H19 up-regulation allows cells to enter a “selfish” survival mode in response to stress conditions, such as destabilization of the genome and hypoxia, by accelerating their proliferation rate and increasing overall cellular resistance to stress. This response is tightly correlated with nullification, dysfunction or significant down-regulation of the master tumor suppressor gene P53. The growing evidence of H19’s involvement in both proliferation and differentiation processes, together with its involvement in epithelial to mesenchymal transition (EMT) and also mesenchymal to epithelial transition (MET), has led us to conclude that some of the recent disputes and discrepancies arising from current research findings can be resolved from a viewpoint supporting the oncogenic properties of H19. According to a holistic approach, the versatile, seemingly contradictory functions of H19 are essential to, and differentially harnessed by, the tumor cell depending on its context within the process of tumor progression.
Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.M itochondria play a key role in many human diseases related to their functions in cellular energy production, biosynthesis of essential cellular compounds, and involvement in autophagy and/or apoptosis regulation (1). Contrary to previously held beliefs, recent studies have demonstrated that mitochondria are also key players in the transformation process of cancer cells and may be used as targets for anticancer therapy (2-6). The involvement of mitochondria in cancer cell function could be linked to the enhanced accumulation of iron and reactive oxygen species (ROS) in mitochondria of cancer cells, which is thought to result from the increased metabolic and energetic demands of the transformed phenotype (7). An interesting, recently discovered group of proteins that could link iron and ROS homeostasis with mitochondrial function in cancer cells are NEET proteins (8-15).NEET proteins [mitoNEET (mNT; CISD1), Nutrient-deprivation autophagy factor-1 (NAF-1; CISD2), and CISD3] are a class of iron-sulfur proteins involved in several human pathologies, including diabetes, cystic fibrosis, Wolfram syndrome 2, neurodegeneration, and muscle atrophy (16)(17)(18)(19)(20)(21)(22). mNT and NAF-1 are localized to the outer mitochondrial membrane. NAF-1 is also localized to the endoplasmic reticulum, where it interacts with BCL-2 and Beclin 1 to regulate autophagy and apoptosis (8-13). Deficiency in mNT causes the accumulation of iron and ROS in mitochondria of animal and plant cells, and deficiency in NAF-1 results in decreased mitochondrial function and stability, as well as activation of autophagy in mice and human cells (13-16, 20, 21).Interestingly, levels of mNT and NAF-1 mRNA are increased significantly in many different human cancer c...
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.
Expression of the imprinted H19 gene is remarkably elevated in a large number of human cancers. Recently, we reported that H19 RNA is up-regulated in hypoxic stress and furthermore, it possesses oncogenic properties. However, the underlying mechanism(s) of these phenomena remain(s) unknown. Here we demonstrate a tight correlation between H19 RNA elevation by hypoxia and the status of the p53 tumor suppressor. Wild type p53 (p53(wt)) prevents the induction of H19 upon hypoxia, and upon its reconstitution in p53(null) cells. The last case is accompanied by a decrease in cell viability. The p53 effect is nuclear and seems independent of its tetramerization. Furthermore, using knockdown and over-expression approaches we identified HIF1-alpha as a critical factor that is responsible for H19 induction upon hypoxia. Knocking down HIF1-alpha abolishes H19 RNA induction, while its over-expression significantly enhances the H19 elevation in p53(null) hypoxic cells. In p53(wt) hypoxic cells simultaneous suppression of p53 and over-expression of HIF1-alpha are needed to induce H19 significantly, while each treatment separately resulting in a mild induction, indicating that the molecular mechanism of p53 suppression effect on H19 may at least in part involve interfering with HIF1-alpha activity. In vivo a significant increase in H19 expression occurred in tumors derived from p53(null) cells but not in p53(wt) cells. Taken together, our results indicate that a functional link exists between p53, HIF1-alpha and H19 that determines H19 elevation in hypoxic cancer cells. We suggest that this linkage plays a role in tumor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.