Objective This study was undertaken to follow up predictive factors for α‐synuclein–related neurodegenerative diseases in a multicenter cohort of idiopathic/isolated rapid eye movement sleep behavior disorder (iRBD). Methods Patients with iRBD from 12 centers underwent a detailed assessment for potential environmental and lifestyle risk factors via a standardized questionnaire at baseline. Patients were then prospectively followed and received assessments for parkinsonism or dementia during follow‐up. The cumulative incidence of parkinsonism or dementia was estimated with competing risk analysis. Cox regression analyses were used to evaluate the predictive value of environmental/lifestyle factors over a follow‐up period of 11 years, adjusting for age, sex, and center. Results Of 319 patients who were free of parkinsonism or dementia, 281 provided follow‐up information. After a mean follow‐up of 5.8 years, 130 (46.3%) patients developed neurodegenerative disease. The overall phenoconversion rate was 24.2% after 3 years, 44.8% after 6 years, and 67.5% after 10 years. Patients with older age (adjusted hazard ratio [aHR] = 1.05) and nitrate derivative use (aHR = 2.18) were more likely to phenoconvert, whereas prior pesticide exposure (aHR = 0.21–0.64), rural living (aHR = 0.53), lipid‐lowering medication use (aHR = 0.59), and respiratory medication use (aHR = 0.36) were associated with lower phenoconversion risk. Risk factors for those converting to primary dementia and parkinsonism were generally similar, with dementia‐first converters having lower coffee intake and beta‐blocker intake, and higher occurrence of family history of dementia. Interpretation Our findings elucidate the predictive values of environmental factors and comorbid conditions in identifying RBD patients at higher risk of phenoconversion. ANN NEUROL 2022;91:404–416
Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.
The neurodegenerative synucleinopathies, including Parkinson’s disease and dementia with Lewy bodies, are characterized by a typically lengthy prodromal period of progressive subclinical motor and non-motor manifestations. Among these, idiopathic REM sleep behavior disorder (iRBD) is a powerful early predictor of eventual phenoconversion, and therefore represents a critical opportunity to intervene with neuroprotective therapy. To inform the design of randomized trials, it is essential to study the natural progression of clinical markers during the prodromal stages of disease in order to establish optimal clinical endpoints. In this study, we combined prospective follow-up data from 28 centers of the International REM Sleep Behavior Disorder Study Group representing 12 countries. Polysomnogram-confirmed REM sleep behavior disorder subjects were assessed for prodromal Parkinson’s disease using the Movement Disorder Society criteria and underwent periodic structured sleep, motor, cognitive, autonomic and olfactory testing. We used linear mixed-effect modelling to estimate annual rates of clinical marker progression stratified by disease subtype, including prodromal Parkinson’s disease and prodromal dementia with Lewy bodies. In addition, we calculated sample size requirements to demonstrate slowing of progression under different anticipated treatment effects. Overall, 1160 subjects were followed over an average of 3.3 ± 2.2 years. Among clinical variables assessed continuously, motor variables tended to progress faster and required the lowest sample sizes, ranging from 151-560 per group (at 50% drug efficacy and 2-year follow-up). By contrast, cognitive, olfactory, and autonomic variables showed modest progression with higher variability, resulting in high sample sizes. The most efficient design was a time-to-event analysis using combined milestones of motor and cognitive decline, estimating 117 per group at 50% drug efficacy and 2-year trial duration. Finally, while phenoconverters showed overall greater progression than non-converters in motor, olfactory, cognitive, and certain autonomic markers, the only robust difference in progression between Parkinson’s disease and dementia with Lewy bodies phenoconverters was in cognitive testing. This large multicenter study demonstrates the evolution of motor and non-motor manifestations in prodromal synucleinopathy. These findings provide optimized clinical endpoints and sample size estimates to inform future neuroprotective trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.