BACKGROUND: The management of basilar invagination (BI) and atlantoaxial dislocation (AAD) is a challenge. OBJECTIVE: To describe a new innovative method to reduce BI and AAD through a single-stage posterior approach. METHODS: Thirty-five patients had irreducible BI and AAD (May 2010 to April 2012). In all patients, reduction of AAD and BI was achieved by using an innovative method of distraction and spacer placement, followed by compression and extension. A C1 lateral mass/C2 translaminar screw was performed in cases where the C1 arch was not assimilated, and occipito-C2 translaminar screw fixation was performed in cases where the C1 arch was assimilated. RESULTS: Thirty-two of 35 (94%) patients improved clinically and 2 patients had stable symptoms (mean Nurick postoperative score = 1.4; preoperative score = 3.7). AAD reduced completely in 33/35 patients and >50% in 2. BI improved significantly in all patients. Solid bone fusion was demonstrated in 24 patients with at least 1-year follow-up (range, 12-39 months; mean, 19.75 + 7.09 months). The duration of surgery was 80 to 190 minutes, and blood loss was 90 to 500 mL (mean, 170 ± 35 mL). There was 1 death because of cardiac etiology and 1 morbidity (wound infection). CONCLUSION: Distractive compressive extension and reduction of BI and AAD seems to be an effective and safe method of treatment. It is different from the earlier described techniques, because it is the first procedure that uses a spacer not, only for distraction, but also as a pivot to perform extension to reduce the AAD.
Currently, green nanotechnology-based approaches using waste materials from food have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the outer peel extract of the fruit Ananas comosus (AC), which is a food waste material. Characterization was done using UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV–visible spectroscopy (at 485 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in AC outer peel extract accountable for the reduction of Ag + ion and the stabilization of AC-AgNPs was investigated through FT-IR. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AC-AgNPs were evaluated for their antioxidative, antidiabetic, and cytotoxic potential against HepG 2 cells along with their antibacterial potential. The results showed that AC-AgNPs are extremely effective with high antidiabetic potential at a very low concentration as well as it exhibited higher cytotoxic activity against the HepG 2 cancer cells in a dose-dependent manner. It also exhibited potential antioxidant activity and moderate antibacterial activity against the four tested foodborne pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AC-AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. Further, it has applications in wound dressing or in treating bacterial related diseases.
The gut microbiota is important in energy contribution, metabolism and immune modulation, and compositional disruption of the gut microbiota population is closely associated with chronic metabolic diseases like type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Metformin (MET) and Flos Lonicera (FL) are common treatments for metabolic diseases in Western and Oriental medicinal fields. We evaluated the effect of treatment with FL and MET in combination on hepatosteatosis, glucose tolerance, and gut microbial composition. FL and MET were administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of genetic T2D and NAFLD. The FL+MET treatment reduced liver weight, serum cholesterol, insulin resistance, and hepatic MDA level and modulated the gut microbial composition. More specifically, the genera of Prevotella and Lactobacillus were negatively associated with the body and liver weights, hepatic TG and TC content, and serum insulin level. However, the relative abundance of these genera decreased in response to the FL+MET treatment. Interestingly, pathway prediction data revealed that the FL+MET treatment attenuated lipopolysaccharide-related pathways, in keeping with the decrease in serum and fecal endotoxin levels. FL and MET in combination exerts a synergistic effect on the improvement of hepatosteatosis and insulin sensitivity in OLETF rats, and modulates gut microbiota in association with the effect.
Metformin and Houttuynia cordata are representative anti-diabetic therapeutics in western and oriental medicine, respectively. The current study examined the synergistic anti-diabetic effect of Houttuynia cordata extraction (HCE) and metformin combination in Otsuka Long–Evans Tokushima Fatty (OLETF) rats. Fecal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Combining HCE + metformin resulted in significantly ameliorated glucose tolerance (oral glucose tolerance test (OGTT))—the same as metformin alone. Particularly, results of the insulin tolerance test (ITT) showed that combining HCE + metformin dramatically improved insulin sensitivity as compared to metformin treatment alone. Both fecal and serum endotoxin, as well as cytokines (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)) were significantly ameliorated by HCE + metformin compared to metformin alone. Meanwhile, the activation of AMPK (adenosine monophosphate-activated protein kinase) by metformin was distinctly enhanced by HCE. Both of HCE and metformin evidently changed the gut microbiota composition, causing the alteration of bacterial metabolite, like short-chain fatty acids. H. cordata, together with metformin, exerts intensive sensibilization to insulin; the corresponding mechanisms are associated with alleviation of endotoxemia via regulation of gut microbiota, particularly Roseburia, Akkermansia, and Gram-negative bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.