Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
The bell pepper is a vegetable with high antioxidant content, and its consumption is important because it can reduce the risk of certain diseases in humans. Plants can be affected by different types of stress, whether biotic or abiotic. Among the abiotic factors, there is saline stress that affects the metabolism and physiology of plants, which causes damage, decreasing productivity and quality of fruits. The objective of this work was to evaluate the application of selenium, silicon and copper nanoparticles and saline stress on the bioactive compounds of bell pepper fruits. The bell pepper plants were exposed to saline stress (25 mM NaCl and 50 mM) in the nutrient solution throughout the crop cycle. The nanoparticles were applied drenching solution of these to substrate (Se NPs 10 and 50 mg L−1, Si NPs 200 and 1000 mg L−1, Cu NPs 100 and 500 mg L−1). The results show that saline stress reduces chlorophylls, lycopene, and β-carotene in leaves; but increased the activity of some enzymes (e.g., glutathione peroxidase and phenylalanine ammonia lyase, and glutathione). In fruits, saline stress decreased flavonoids and glutathione. The nanoparticles increased chlorophylls, lycopene and glutathione peroxidase activity in the leaves; and ascorbate peroxidase, glutathione peroxidase, catalase and phenylalanine ammonia lyase activity, and also phenols, flavonoids, glutathione, β-carotene, yellow carotenoids in fruits. The application of nanoparticles to bell pepper plants under saline stress is efficient to increase the content of bioactive compounds in fruits.
Silicon is an essential nutrient for humans, additionally is beneficial for terrestrial plants. In plants Si enhances tolerance to different types of stress; in humans, it improves the metabolism and increases the strength of skeletal and connective tissues as well as of the immune system. Most of the Si intake of humans come from edible plants creating a double benefit: first, because the absorption of Si increases the antioxidants and other phytochemicals in plants, thereby increasing its functional value, and second because the higher concentration of Si in plants increases intake in human consumers. Therefore, it is desirable to raise the availability of Si in the human diet through the agronomic management of Si accumulator species, such as corn, wheat, rice, soybeans, and beans. But also in such species as tomatoes, carrots, and other vegetables, whose per capita consumption has increased. However, there are few systematized recommendations for the application and management of Si fertilizers based on the physicochemical factors that determine their availability, absorption, transport, and deposition in cells and tissues. This study presents updated information about edaphic and plant factors, which determine the absorption, transport, and deposition rates in edible organs. The information was integrated into an estimated dynamic model that approximates the processes previously mentioned in a model that represents a tomato crop in soil and soilless conditions. In the model, on the other hand, was integrated the available information about key environmental factors related to Si absorption and mobilization, such as the temperature, pH, and soil organic matter. The output data of the model were compared against information collected in the literature, finding an adequate adjustment. The use of the model for educational or technical purposes, including the possibility of extending it to other horticultural crops, can increase the understanding of the agronomic management of Si in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.