Great differences in end-of-life practices in treating the critically ill around the world warrant agreement regarding the major ethical principles. This analysis determines the extent of worldwide consensus for end-of-life practices, delineates where there is and is not consensus, and analyzes reasons for lack of consensus. Critical care societies worldwide were invited to participate. Country coordinators were identified and draft statements were developed for major end-of-life issues and translated into six languages. Multidisciplinary responses using a web-based survey assessed agreement or disagreement with definitions and statements linked to anonymous demographic information. Consensus was prospectively defined as >80% agreement. Definitions and statements not obtaining consensus were revised based on comments of respondents, and then translated and redistributed. Of the initial 1,283 responses from 32 countries, consensus was found for 66 (81%) of the 81 definitions and statements; 26 (32%) had >90% agreement. With 83 additional responses to the original questionnaire (1,366 total) and 604 responses to the revised statements, consensus could be obtained for another 11 of the 15 statements. Consensus was obtained for informed consent, withholding and withdrawing life-sustaining treatment, legal requirements, intensive care unit therapies, cardiopulmonary resuscitation, shared decision making, medical and nursing consensus, brain death, and palliative care. Consensus was obtained for 77 of 81 (95%) statements. Worldwide consensus could be developed for the majority of definitions and statements about end-of-life practices. Statements achieving consensus provide standards of practice for end-of-life care; statements without consensus identify important areas for future research.
PurposeTo describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock).MethodsWe performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis.ResultsThe cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation.ConclusionThis multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection.Electronic supplementary materialThe online version of this article (10.1007/s00134-019-05819-3) contains supplementary material, which is available to authorized users.
BackgroundTo characterize and identify prognostic factors for 28-day mortality among patients with hospital-acquired fungemia (HAF) in the Intensive Care Unit (ICU).MethodsA sub-analysis of a prospective, multicenter non-representative cohort study conducted in 162 ICUs in 24 countries.ResultsOf the 1156 patients with hospital-acquired bloodstream infections (HA-BSI) included in the EUROBACT study, 96 patients had a HAF. Median time to its diagnosis was 20 days (IQR 10.5–30.5) and 9 days (IQR 3–15.5) after hospital and ICU admission, respectively. Median time to positivity of blood culture was longer in fungemia than in bacteremia (48.7 h vs. 38.1 h; p = 0.0004). Candida albicans was the most frequent fungus isolated (57.1 %), followed by Candida glabrata (15.3 %) and Candida parapsilosis (10.2 %). No clear source of HAF was detected in 33.3 % of the episodes and it was catheter-related in 21.9 % of them. Compared to patients with bacteremia, HAF patients had a higher rate of septic shock (39.6 % vs. 21.6 %; p = 0.0003) and renal dysfunction (25 % vs. 12.4 %; p = 0.0023) on admission and a higher rate of renal failure (26 % vs. 16.2 %; p = 0.0273) at diagnosis. Adequate treatment started within 24 h after blood culture collection was less frequent in HAF patients (22.9 % vs. 55.3 %; p < 0.001). The 28-day all cause fatality was 40.6 %. According to multivariate analysis, only liver failure (OR 14.35; 95 % CI 1.17–175.6; p = 0.037), need for mechanical ventilation (OR 8.86; 95 % CI 1.2–65.24; p = 0.032) and ICU admission for medical reason (OR 3.87; 95 % CI 1.25–11.99; p = 0.020) were independent predictors of 28-day mortality in HAF patients.ConclusionsFungi are an important cause of hospital-acquired BSI in the ICU. Patients with HAF present more frequently with septic shock and renal dysfunction on ICU admission and have a higher rate of renal failure at diagnosis. HAF are associated with a significant 28-day mortality rate (40 %), but delayed adequate antifungal therapy was not an independent risk factor for death. Liver failure, need for mechanical ventilation and ICU admission for medical reason were the only independent predictors of 28-day mortality.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1229-1) contains supplementary material, which is available to authorized users.
Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp . (20.3%), Escherichia coli (15.8%), and Pseudomonas spp . (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-022-06944-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.