The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state [1], and generating new states of matter by achieving BoseEinstein condensation of atomic vapors [2]. Analogous cooling techniques [3, 4] provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity optoor electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion [5][6][7][8][9][10][11][12][13][14][15]. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantumlimited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit [3]. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons [16]. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion [17,18], possibly even testing quantum theory itself in the unexplored region of larger size and mass [19]. The universal ability to connect disparate physical systems through mechanical motion naturally leads towards future methods for engineering the coherent transfer of quantum information with widely different forms of quanta.Mechanical oscillators that are both decoupled from their environment (high quality factor Q) and placed in the quantum regime could allow us to explore quantum mechanics in entirely new ways [17][18][19][20][21]. For an oscillator to be in the quantum regime, it must be possible to prepare it in its ground state, to arbitrarily manipulate its quantum state, and to detect its state near the Heisenberg limit. In order to prepare an oscillator in its ground state, its temperature T must be reduced such that k B T < Ω m , where Ω m is the resonance frequency of the oscillator, k B is Boltzmann's constant, and is the reduced Planck's constant. While higher resonance frequency modes (> 1 GHz) can meet this cooling requirement with conventional refrigeration (T < 50 mK), these stiff oscillators are difficult to control and to detect within their short mechanical lifetimes. One unique approach using passive cooling has successfully overcome these difficulties by using a piezoelectric dilatation osci...
Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour, but for a low-quality-factor mechanical system. The field of cavity optomechanics and electromechanics, in which a high-quality-factor mechanical oscillator is parametrically coupled to an electromagnetic cavity resonance, provides a practical architecture for cooling, manipulation and detection of motion at the quantum level. One requirement is strong coupling, in which the interaction between the two systems is faster than the dissipation of energy from either system. Here, by incorporating a free-standing, flexible aluminium membrane into a lumped-element superconducting resonant cavity, we have increased the single-photon coupling strength between these two systems by more than two orders of magnitude, compared to previously obtained coupling strengths. A parametric drive tone at the difference frequency between the mechanical oscillator and the cavity resonance dramatically increases the overall coupling strength, allowing us to completely enter the quantum-enabled, strong-coupling regime. This is evidenced by a maximum normal-mode splitting of nearly six bare cavity linewidths. Spectroscopic measurements of these 'dressed states' are in excellent quantitative agreement with recent theoretical predictions. The basic circuit architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of long-lived quantum states of mechanical motion.
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. The coupling strength is mediated by a flux-biased rf SQUID operated in the nonhysteretic regime. By tuning the applied flux bias to the rf SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator. We verify the modulation of coupling strength from 0 to 100 MHz by observing modulation in the size of the splitting in the phase qubit's spectroscopy, as well as coherently by observing modulation in the vacuum Rabi oscillation frequency when on resonance. The measured spectroscopic splittings and vacuum Rabi oscillations agree well with theoretical predictions.
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling strengths from zero to near the ultrastrong coupling regime. By modulating the magnetic susceptibility, nonresonant parametric coupling achieves rates >100 MHz. Nonlinearity of the magnetic susceptibility also leads to parametric coupling at the subharmonics of the qubit-resonator detuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.