Background and Purpose Sodium channel inhibitors can be used to treat hyperexcitability‐related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. Experimental Approach Patch‐clamp experiments with ultra‐fast solution exchange and photolabeling‐coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. Key Results We present evidence that riluzole acts predominantly by non‐blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. Conclusions and Implications Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Hyperexcitability-related diseases include epilepsies, pain syndromes, neuromuscular disorders, and cardiac arrhythmias. Sodium channel inhibitors can be used to treat these conditions, however, their applicability is limited by their nonspecific effect on physiological function. They act by channel block (obstructing ion conduction, since the binding site is within the channel pore), and by modulation (delaying recovery from the non-conducting inactivated state). Channel block inhibits healthy and pathological tissue equally, while modulation can preferentially inhibit pathological activity. Therefore, an ideal sodium channel inhibitor drug would act by modulation alone. Unfortunately, thus far no such drug has been known to exist. Here we present evidence that riluzole acts by this "ideal" mechanism, "non-blocking modulation" (NBM). We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the "fenestrations" (cavities connecting the central cavity to the membrane phase). Using precisely timed UV pulses to photolabel specific conformations of the channel, we show that association to the local anesthetic binding site requires prior inactivation. We discuss why kinetics of binding is crucial for selective inhibition of pathological activity, and how the NBM mechanism can be recognized using a special voltage-and drug application-protocol. Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Standard high throughput screening projects using automated patch-clamp instruments often fail to grasp essential details of the mechanism of action, such as binding/unbinding dynamics and modulation of gating. In this study, we aim to demonstrate that depth of analysis can be combined with acceptable throughput on such instruments. Using the microfluidics-based automated patch clamp, IonFlux Mercury, we developed a method for a rapid assessment of the mechanism of action of sodium channel inhibitors, including their state-dependent association and dissociation kinetics. The method is based on a complex voltage protocol, which is repeated at 1 Hz. Using this time resolution we could monitor the onset and offset of both channel block and modulation of gating upon drug perfusion and washout. Our results show that the onset and the offset of drug effects are complex processes, involving several steps, which may occur on different time scales. We could identify distinct sub-processes on the millisecond time scale, as well as on the second time scale. Automated analysis of the results allows collection of detailed information regarding the mechanism of action of individual compounds, which may help the assessment of therapeutic potential for hyperexcitability-related disorders, such as epilepsies, pain syndromes, neuromuscular disorders, or neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.