A Lagrangian snow‐evolution model (SnowModel‐LG) was used to produce daily, pan‐Arctic, snow‐on‐sea‐ice, snow property distributions on a 25 × 25‐km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective‐Analysis for Research and Applications‐Version 2 (MERRA‐2) and European Centre for Medium‐Range Weather Forecasts (ECMWF) ReAnalysis‐5th Generation (ERA5) atmospheric reanalyses, and National Snow and Ice Data Center (NSIDC) sea ice parcel concentration and trajectory data sets (approximately 61,000, 14 × 14‐km parcels). The simulations performed full surface and internal energy and mass balances within a multilayer snowpack evolution system. Processes and features accounted for included rainfall, snowfall, sublimation from static‐surfaces and blowing‐snow, snow melt, snow density evolution, snow temperature profiles, energy and mass transfers within the snowpack, superimposed ice, and ice dynamics. The simulations produced horizontal snow spatial structures that likely exist in the natural system but have not been revealed in previous studies spanning these spatial and temporal domains. Blowing‐snow sublimation made a significant contribution to the snowpack mass budget. The superimposed ice layer was minimal and decreased over the last four decades. Snow carryover to the next accumulation season was minimal and sensitive to the melt‐season atmospheric forcing (e.g., the average summer melt period was 3 weeks or 50% longer with ERA5 forcing than MERRA‐2 forcing). Observed ice dynamics controlled the ice parcel age (in days), and ice age exerted a first‐order control on snow property evolution.
Snow covers Arctic and boreal regions (ABRs) for approximately 9 months of the year, thus snowscapes dominate the form and function of tundra and boreal ecosystems. In recent decades, Arctic warming has changed the snowcover's spatial extent and distribution, as well as its seasonal timing and duration, while also altering the physical characteristics of the snowpack. Understanding the little studied effects of changing snowscapes on its wildlife communities is critical. The goal of this paper is to demonstrate the urgent need for, and suggest an approach for developing, an improved suite of temporally evolving, spatially distributed snow products to help understand how dynamics in snowscape properties impact wildlife, with a specific focus on Alaska and northwestern Canada. Via consideration of existing knowledge of wildlife-snow interactions, currently available snow products for focus region, and results of three case studies, we conclude that improving snow science in the ABR will be best achieved by focusing efforts on developing data-model fusion approaches to produce fitfor-purpose snow products that include, but are not limited to, wildlife ecology. The relative wealth of coordinated in situ measurements, airborne and satellite remote sensing data, and modeling tools being collected and developed as part of NASA's Arctic Boreal Vulnerability Experiment and SnowEx campaigns, for example, provide a data rich environment for developing and testing new remote sensing algorithms and retrievals of snowscape properties.
Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die‐offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual‐based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six‐week delay in snow‐onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter‐onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.
Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.