After entering tissues, monocytes differentiate into cells that share functional features with either macrophages or dendritic cells (DCs). How monocyte fate is directed toward monocyte-derived macrophages (mo-Macs) or monocyte-derived DCs (mo-DCs) and which transcription factors control these differentiation pathways remains unknown. Using an in vitro culture model yielding human mo-DCs and mo-Macs closely resembling those found in vivo in ascites, we show that IRF4 and MAFB were critical regulators of monocyte differentiation into mo-DCs and mo-Macs, respectively. Activation of the aryl hydrocarbon receptor (AHR) promoted mo-DC differentiation through the induction of BLIMP-1, while impairing differentiation into mo-Macs. AhR deficiency also impaired the in vivo differentiation of mouse mo-DCs. Finally, AHR activation correlated with mo-DC infiltration in leprosy lesions. These results establish that mo-DCs and mo-Macs are controlled by distinct transcription factors and show that AHR acts as a molecular switch for monocyte fate specification in response to micro-environmental factors.
Escherichia coli can survive extreme acid stress for several hours. The most efficient acid resistance system is based on glutamate decarboxylation by the GadA and GadB decarboxylases and the import of glutamate via the GadC membrane protein. The expression of the corresponding genes is controlled by GadE, the central activator of glutamate-dependent acid resistance (GDAR). We have previously shown by genetic approaches that as well as GadE, the response regulator of the Rcs system, RcsB is absolutely required for control of gadA/BC transcription. In the presence of GadE, basal activity of RcsB stimulates the expression of gadA/BC, whereas activation of RcsB leads to general repression of the gad genes. We report here the results of various in vitro assays that show RcsB to regulate by direct binding to the gadA promoter region. Furthermore, activation of gadA transcription requires a GAD box and binding of an RcsB/GadE heterodimer. In addition, we have identified an RcsB box, which lies just upstream of the −10 element of gadA promoter and is involved in repression of this operon.
Significance
Monocytes are key players in immune responses to pathogen entry. They exert a major part of their function through their differentiation into macrophages or dendritic cells, two populations with largely distinct roles in immune responses. Yet, we still have a very limited view of the factors orientating monocyte fate to become macrophages versus dendritic cells, in particular how pathogen recognition modulates this process. Here, we show that pathogen sensing skews monocyte fate decision, that is, the first steps of the differentiation process, with TLR signaling favoring macrophage development while NOD receptor signaling induces dendritic cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.