High-risk HPVs play a causal role in the development of cervical cancer, and their E6 oncoproteins target h-Dlg for ubiquitin-mediated proteolysis. The h-Dlg oncosuppressor is associated with cell-cell interactions, and deregulation of these structures leads to defective cell adhesion, loss of cell polarity and unregulated proliferation. We evaluated the contribution of this E6 activity in the progression to malignancy in HPV infections by analyzing h-Dlg expression in HPV-associated lesions. We analyzed h-Dlg in cervical, laryngeal, vulvar, colon and kidney histologic samples by Dlg immunohistochemistry. HPV association was ascertained by a PCR-colorimetric method. Although Dlg was certainly expressed in intraepithelial cervical, vulvar and laryngeal HPVassociated lesions, its cellular and tissue distribution patterns were altered compared to normal tissue. However, marked reduction in Dlg levels was observed in HPV-positive invasive cervical carcinomas. To elucidate whether the loss of Dlg was significant for carcinogenesis in general, we investigated Dlg expression in tumors not associated with HPV. In colon and kidney carcinomas, Dlg was expressed, albeit with a different pattern of distribution with respect to the normal tissue. The loss of Dlg may be considered a late-stage marker in cervical carcinogenesis, but alterations in its expression and localization take place during the different dysplastic stages. Dlg downregulation and/or alterations in its localization may contribute to transformation and may explain some of the characteristics of the malignant cells, such as loss of polarity and high migration ability. © 2004 Wiley-Liss, Inc. Key words: human papillomavirus; E6 protein; hDlg oncosuppressor; proteolysis; immunohistochemistryA large number of epidemiologic studies have demonstrated high-risk HPV association in almost 100% of invasive carcinomas of the uterine cervix and in the development of precursor intraepithelial neoplastic lesions. 1 The principal oncogenic effects of HPVs are mediated by the E6 and E7 proteins, which target and interfere with the function of key regulatory cellular proteins. 2 E6 oncoproteins have a great number of cellular targets involved in the regulation of cell proliferation, differentiation, apoptosis and adhesion. E6 stimulates the degradation of many of its partners, such as p53, bak, Mcm7, h-Dlg1 and h-scrib, by ubiquitin-mediated proteolysis. [3][4][5][6][7] Dlg, human homologue of Drosophila Dlg-A, was the first reported target of E6 related to cell-cell interactions and polarity. 6 Dlg 8,9 is a member of the MAGuK family of proteins, characterized by specific protein recognition domains including SH3, PDZ and homologous GuK regions. 8 -10 In Drosophila, Dlg is involved in cell growth control, maintenance of cell adhesion and polarity and functions that block cell invasion during development. 11 Dlg and another 2 related tumor suppressors, scribble and lgl, act cooperatively in regulating cell polarity and proliferation, suggesting an important connection betw...
We explored the cutaneotropic HPV genetic diversity in 71 subjects from Argentina. New generic primers (CUT) targeting 88 mucosal/cutaneous HPV were designed and compared to FAP primers. Overall, 69 different HPV types/putative types were identified, being 17 of them novel putative types. Phylogenetic analysis of partial L1 sequences grouped 2 novel putative types in the Beta-PV, 14 in the Gamma-PV and 1 in the Mu-PV genera. CUT primers showed broader capacity than FAP primers in detecting different genera/species and novel putative types (p<0.01). Using overlapping PCR, the full-length genome of a Beta-PV putative type was amplified and cloned. The new virus, designated HPV 115, encodes 5 early genes and 2 late genes. Phylogenetic analysis indicated HPV 115 as the most divergent type within the genus Beta-PV species 3. This report is the first providing data on cutaneous HPVs circulating in South America and expands our knowledge of the Papillomaviridae family.
Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. IMPORTANCEThis study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage-and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.